OBJECT ORIENTED DESIGN WITH C++
AN INTRODUCTION

Software is a collection of program®rogram is a set of statements that performs a
specific task. Since the invention of the computeany programming approaches have been
tried. These included techniques suchMaadular Programming, Top-Down Programming,
Bottom-Up Programming and Structured Programming.

With the advent of languages such as C, structpregramming became very popular
and was the main technique of the 1980’s. Strudtpm®gramming was a powerful tool that
enabled programmers to write moderately complexgnanmos fairly easily. However, as the
programs grew larger, even the structured appréaled to show the desired results in terms of
bug-free, easy-to-maintain, and reusable programs.

Object Oriented Programming (OOP) is an approach to program organization and
development that attempts to elimpinate some of ditkalls of conventional programming
methods by incorporating the best of structuredgEnmming features with several powerful
new concepts. It is a new way of organizing andettgying programs and has nothing to do
with any particular language.

PROCEDURE ORIENTED PROGRAMMING

The technique of hierarchical decomposition hasnbesed to specify the tasks to be
completed in order to solve a problem... Procedurented programming basically consist of
writing a list of in structions for the computer follow, and organizing these actions and
represent the flow of control from one action toter, A list of instructions for the computer
to follow, and organizing these instructions intoups known agunctions.

Main Proarar

A 4

Main Proarar Main Proarar Main Proarar
Main Proarar Main Proarar
Main Proarar Main Proarar Main Proarar

Fig. Typical structure of procedure oriented programs

OBJECT ORIENTED PROGRAMMING

Object Oriented Program (OOP) treats data as acarielement in the program
development and does not allow it to flow freelguard the system. It ties data more closely to
the functions that operate on it and protects amfraccidental modification from outside
function. OOP allows us to decompose a problem anttumber of entities called object and
then builds data and functions around these estitie

Object A Object B

Datz Dats

\ 4 \ 4

Functior [« » Functior

% P

Date
\ 4
Functior
Object C

Fig. Organization of data and functionsin OOP
Basic Concepts of Object Oriented Programming

Objects

Data Abstraction
Inheritance
Dynamic binding

PwdPE

Classes

Data Encapsulation
Polymorphism
Message Passing

©NOo O

The detailed information of the basic concepts bjfe® Oriented Programming will be
discussed in later.

OBJECT ORIENTED LANGUAGES

The languages should support several of the OOPepd® to claim that they are object
oriented. Depending upon the features they supi@y, can be classified into the following two
categories.

1. Object based Programming languages
2. Object Oriented Programming languages

Object based programming is the style of programgmthat primarily supports
encapsulation and object identity.

Major features that are required for object- bgg@dramming are

» Data encapsulation

» Data hiding and access mechanisms

» Automatic initialization and clear-up of objects
» Operator Overloading.

Languages that support programming with objects sa&l to be object based
programming languages. They do not support inhesgand dynamic binding. Ada is a typical
object-based programming language.

Object-oriented programming incorporates all of egbjpased programming features
along with two additional features namely Inhertiamnd Dynamic binding.

Object-oriented features = Object-based featurelerltance + Dynamic binding

Example: for Object-Oriented prognaimg languages
C++, Smalltalk antjéct Pascal.

C++ AN INTRODUCTION

C++ is an Object-Oriented Programming languagdially named “C with Classes”,
C++ was developed by Bjarne Stroustrup at AT &TI|Bselboratories in Murray Hill, New
Jersy, USA in the early eighties. C++ is the sugten§ C. Most of the thinks are applied to C++.

Applications of C++

C++ is a flexible language for handling very lagg®grams. It is suitable for virtually
any programming task including development of editcompilers, databases, communication
systems and any complex real life application syste

Since C++ allows us to create hierarchy-relateceabj we can build special object-
oriented libraries which can be used later by nfanegrammers.

C++ programs are easily maintainable and expandsfiteen a new feature needs to be
implemented, it is very easy to add to the exissitmgcture of an object.

The three most important facilities that C++ adds to C are classes, function
overloading, and operator overloading.

DATA TYPES

There are five atomic data types in C: charactear(¢ integer (int), floating-point (float),
double (double), and valueless (void). C++ addsnveoe bool and wchar t. the exact format of
floating point values will depend upon how they amgplemented. Integers will generally
correspond to the natural size of a word on thé tmsputer. Values outside that range may be
handled differently by different compilers.

The range of float and double will depend uponrttethod used to represent the floating
minimum range for a floating point value is 1E-37 E-37. The type void either explicitly
declares a function as returning no value or ceegémeric pointers.

Thefollowing figure illustrates the size of the data type occupiesin the memory

Datatype Typical Minimal Range
sizein bits

char 8 -127 to 127
unsigned cha 8 0 to 25¢
signed char 8 -127 to 127
int 16 -32,767 to 32767
unsigned int 16 0 to 65,535
signed in 16 Same as in
short in 16 -32,767 to 32,7€
unsigned shortint 16 0 to 65,535
signed short int 16 Same as short int
long int 32 -2,147,483,647

2,147,483,647
signed short int 32 Same as long int
unsigned long ir | 32 0 to 4,294,967,2¢
float 32 Six digits of precisio
double 64 Ten digits of precision
long double 80 Ten digits of precision

IDENTIFIERS AND KEY WORDS

IDENTIFIERS

Identifiers can be defined as the name of the legand some other program element
using the combination of the following characters.

Alphabets . a.z,A.Z
Numerical 0.9
Underscore

Special characters

All characters other than the above are treategpasial characters. For example [], blank
space, () etc.

In C++ language, upper case and lower case laterslestined and hence there are 52
letters in all. A variable should not begin witldigit. C++ does not set a maximum length for an
identifier.

Thefollowing are valid identifiers Thefollowing are invalid identifiers
MyName 4ab
I name ()
14 first name
h_name
KEYWORDS

The keywords are also identifiers but cannot be dedined since they are reserved
words. The following words are reserved for us&kegvords. We should not choose them as
variables or identifiers.

Asm continue float new signed try
Auto default for operator sizeof typedef
Break delete friend private static union
Case do goto protected struct unsigned
Catch double if public switch virtual
Char else neli register template void
Class enum int return this volatile
Const extern long short throw while
CONSTANTS

The value that cannot be changed during execudicalled constant, ie. Unmodifiable
General syntax:

Const x=10; //Value could not changed during the exexuti
There are three types of constants

» String Constants
» Numeric Constants
» Character Constants

STRING

A String constant is a sequence of alphanumericackers enclosed in double quotation
marks whose maximum length is 255 characters.
Example: “Hi Student”

NUMERIC

Numeric constants are positive or negative numbEngre are four types of numeric
constants: Integer constant, floating point cortstaex constant and octal constant. An integer
constant may either be of single precision or deyécision.

Numeric consents I nteger Integer

Shiteger (short)
Lohgeger (long)

Float Single precision (float)
Doelgrecision (double)
Lodguble

Unsigned Unsigned char
Umised integer
Ugised short integer

Ugised long integer

Hex Short hexadecimal
lgphexadecimal

Octal Short octal
Lgpactal

Example: for Integer Constants

Const int x=100;
Const short int y=1;
Const long int z=1000123;

CHARACTER

A character represented within single quotes dereieharacter constant.

Examples

BACKSLASH CONSTANTS

The backslash (\) is used to denote non-graphiacters and other special characters for
a specific operation. The following charactersused as non as non-graphic characters”

\a’ alert a bell character \n’ new lifkene feed)

t\ horizontal tab b’ badpace

\r carriage return ‘\f’ forrfeed

‘v’ vertical tab ‘\Vdrkslash

\" single quote ‘\"adible quote

O’ null character ‘\?ugstion mark
Expressions

An Expression is a collection of data object andrapds that can be evaluated to a single
value. An object is a constant, variable or anyp#xpression.
General Form Example

Objectl operator Object2 2+3 evaluates 5

6/2 evaluates 3
OPERATORS

Operators are used to evaluate the objects /vagabl
ARITHMETIC OPERATORS
Arithmetic operations are the basic and common aimers performed using any

computer programming. If two variables (operands) aperated by an operator than the
operators is normally called binary operator. I§iain single variable it is called unary operator

OPERATOR MEANING

+ Addition
- Subtraction
* Multipition
Division
% Modulorfrainder of an integer division)

Example:

Int x=10" y=50, Z;
Z=X+Y;

ASSIGNMEMT OPERATORS

An assignment operator is used to assign back variable, a modified value of the
present holding. The symbol = is used as an asgghaperator and it is evaluated at the last.

OPERATOR MEANING

= Assign a value to a variable

+ = Add and assign the value

-= Subtract and assign the value

*= Multiply and assign the value

/= Divide and assign the value

%= Remainder should be stored back to the variable

>> = Right shift and assign (Shift operator diseasm later)

<< = Left shift and assign (Shift operator disrsin later)

&= Bitwise AND operation and assign(Bitwise operatdiscussed
In later)

\= Bitwise OR operation and assign (Bitwise opanisatliscussed
In later

~= Bitwise Complement and assign (Bitwise opesatliscussed
In later)

Example

A=5;

Assign the value 5 is into the variable A
B=6

B*=5

B contains the value 30

COMPARISON OPERATORS

The comparison Operator can be grouped in to tviegoaies: Relational Operator and
Equality Operators.

OPERATOR | MEANING CATEGORY

< Lass than Relational Operator
> Greater than Relational Operator
<= Lass than or equal to Relational Operator
>= Greater than or equal to Relational Operator
= Equal Equality Operator

I= Not equal to Equality Operator

General Syntax

Varl <= var2

LOGICAL OPERATORS

OPERATOR MEANING
&& Logical AND
|| Logical OR
! Not

Logical AND

A compound expression is true when two conditi@g(essions) are tru&he results of
the Logical AND operator becomes.

A B Result A & B
False False False
False True False

True False False

True True True

General Syntax:
(expressionl && expression2)
Logical OR

A compound expression is true either one condisanue. The result of the Logical OR
operator becomes.

A B Result A || B
False False False
False True True

True False True

True True True

General Syntax
(expressionl || expression2)
Logical NOT
A logical expression can be changed from falserde br from true to false with the

negation operator.
Theresult of the logical Not operator becomes.

A Result! A
True False
False True

10

General Syntax
(! Expression)

BITWISH OPERATORS (OR BITWISE LOGICAL OPERATORYS)

OPERATOR MEANING

& Bitwise AND

N Bitwise Exclusive OR

Bitwise (Inclusive) OR

>> Bitwise right shift

<< Bitwise left shift

= Bitwise complement

SPECILE OPERATORS
A. Unary Operators

The unary operators require only a single exprassfmerand to produce a line. Unary
operators usually precede their single operandsieBmes, some operators may be followed by
the operands such as incrementer and decrementer.

OPERATOR MEANING
* Contents of the storage field to which a poinggpointing

Negative value
Negation (O if value 1, 1 if value 0)
~ Bitwise complemer

& Address of a variable
I

++ Increment

- Decrement

type Forced type of conversion

sizeof Size of the subsequent data type or tyjyte

b. Ternary Operator (?:)

The? : Conditional operator is ternary operator:
General Syntax:
Expressionl? expression2:expression3

11

If Expressionl is True then expression2 is evatliatberwise expression3 is evaluated.

Example:

X=6;

X<5? A=0; a=1

Now the a value is 1, because x<5 is false.
C. Comma Operator (,)

The comma separates the elements of a functionremgulist. It is also used in comma
expressions.

Example:

Int X, v;
It is explained in detalil in the topic control smatents.

a) Scope Resolution Operator (::)

b) Pointer - to- member declarator (::*)
c) Painter - to- member operator (->*)
d) Pointer- to- member operator (.*)

€) New and delete operators

f) Line feed operator end |

g) Field width operator set

TYPE CONVERSION

In certain situations, some variables are decla®dntegers but sometimes it may be
required to get the result as floating point nursb&he type conversion is to convert the set of
declared type of some other required type. It 8/da convert values from one type to another

type.
Example:

Int x = 10;

Floaty = 11.4;

X=y

The above statements are valid. After the execudfathe statement x=y, x value is 11.
ie the x value is truncated.

Conversions can be carried out in two ways,

» Converting by assignment
» Using Cast operator

a) Converting by assignment

12

It is usual way of converting a value from onead#fpe to another by using the
assignment operator (= operator)

Example:
Char ch ='a’;
Int I=ch;

Currently the | value is 97 ie the ASCII value of a

b) Cast operator

Converting by assignment operator is carried otwraatically but one may not get the
desired result. The cast operator is a technigdertefully convert one data type to the other.
The operator used to force this conversion is kn@srthe cast operator and the process is
known as casting.

General Syntax:

(cast-type) expression;

Or

Cast-type (expression);

Example:

Int X=6, y=5;

Float result;

Result= (float) x/y;

Result 1=x/y;

Result 1 contains the value 1 and result contaids 1

DECLARATION OF VARIABLES

In C, all variables must be declared before defjnany executable statement in a
program, but C++ allows declaration of the varighbefore and after executable statements. A
declaration is a process of naming of the variabtestheir corresponding data types in C++.

The variable must be declared by specifying tha tigie and the identifier.

General Syntax:

Data-type identifierl, id2, id3, ..., idn;

Example:

Char ch;

Where ch is the character data type.
Short int x, y;

Where X, y are short integer data type and hold giae of 16 bits in length.
Long int x1;

Where x1 is a long integer data type whose maxirsizmis 32 bits in length.
Unsigned int limit;

13

Where limit is a variable and it has been decla®dn unsigned integer data type.
STATEMENTS

A statement in a computer program carries out saoi®mn. There are thee types of
statements used in C++. They are expression staternempound statement, and control
statement.

(i) Expression statement

An expression statement consists of any valid Cepression followed by a semicolon.
The expression statement is used to evaluate @ gfoexpressions.

X=y,

Sum=x +vy;

(i) Compound statement

A group of valid C++ expressions placed within ada statement is called a compound
statement or a block. The individual statement m@yf an expression statement, a compound
statement or even a control statement. Note tleatdimpound statement is not completed with a
semicolon.

Example:

{

A=b+c;
X=X*X;
Y=a+tx;

}

(iii) Control Statement

The control statement is used for the program feowd to check the conditions of the
given expression or a variable or a constant. Taégwkrds of the control statements are
normally a predefined or reserved word and the gamogner may not use them as ordinary
variables.

COMMENTS
Comments start with a double slash symbol and textmiat the end of line. A comment
may start anywhere in the line whatever followisttie end of the line is ignored. The comment

statement does not compile during the compilation.

Single line commenting
/] Statement

Multi line commenting
14

/*
Statements
*/

SIMPLE C++ PROGRAMS
A typical C++ program would contain four

Sections: include files, class declaration, clagscfions and definitions and the main
program

Include files

Class declarations

Class functions and definitions

Main function program

The include directories or (Pre processor directives) specifies the header file which
contains the functions are used in our program.

Example:
include <iostream.h>
It will be discussed later.

Class declarations, Class functions and definitions are specifiedrafie header files included.
Finally themain function program. It is the entry point of our program.

IOSTREAM.H

The standard header file input and output streamstrdam.h> contains a set of small
and specific general purpose functions for handimput and output datahe 1/O stream is a
sequence of following characters written for theeen display of read from the keyboard. The
standard input and output operations in C++ arenatly performed by using the 1/O stream as
cin for input and cout for output. C++ allows thtgpes of stream classes namely.

| stream consists of input function to read aatneof characters from the keyboard.
Ostream consists of output functions to write arettdéer onto the screen.
| ostream supports both input /output stream of fiorcto read a stream of characters

from the keyboard and to display a stream of objettb the video screen.

15

INPUT AND OUTPUT STATTEMENTS
a) cout

Thecout is used to display an object onto the standaricdemormally the video screen.
The insertion operator (<<) is used along withdbat stream.
General System:

Cout<<”"String” <<var2<<var3<<...<<varn

Example:

Int x=100;

Char ch="a’;

Cout<<x<< ch;

Cout<<"The output is “<<x;
b) cin

The cin is used read a number, a character orng sif characters from a standard input
device, normally the keyboard. The extraction ofmerg>>) is used along with the cin operator.

General Syntax:
cin >> varl>>var2>>..>>varn;
Example:

Int a, b;

Cin>>a >> b;

A complete C++ program

Program 1: A simple c++ program that prints “This is may fipsogram in C++"

#include<iostream.h> //Include the pre processor directives
Void main () /I Main function

{ /l block open

Cout <<"This is my first program in C++”; //Stanent

} // block closed

Program 2: A program to read any two numbers through the &ayih and to perform
simple arithmetic operations.

/[Program for Addition of two numbers
#include <iostream.h>

Void main ()

{

Int a, b;

Cout<<”Enter the two numbers” <<endl;

16

Cin>>a>>b;

Cout <<"Addition value="<<a +b <<endl;
Cout<< “Subtraction value="<<a-b<<endl;
Cout <<"Multiplication value="<<a*b<<endl;
Cout <<Division value="<<a/b<<end!;

}
MANIPULATOR FUNCTIONS

Manipulator functions are special stream functitret change certain characteristics of
the input and output. They change the format flags values for a stream. The main advantage
of using manipulator functions is that they faeilé the formatting of input and output streams.

The following are the list of standard manipulatosed in a C++ program. To carry out
the operations of these manipulator functions user program, the header file input and output
manipulator<iomanip.h> must be included.

Predefined manipulators

Following are the standard manipulators normallduis the stream class.
Endl is an output manipulator to generate a carriagegmedr line feed character

Example:
Cout<<”"Hello” <<endl;
Setbase() manipulator is used to conveet blase of one numberic value into another

base. In addition to the base conversion facilgigsh as to bases dec, hex
and oct, the &s#q) manipulator is also used to define the bhteo
numeral valueaofariable.

Hex hexadecimal base (base 16)
Dec decimal base (base 10)
Oct octal base (base 8)

Example:
#include<iostream.h>
#include <iomanip.h>
Void main()
{
Int value=10;
Cout <<”Decimal base="<<dec<<value<<end!:
Cout<<”’Hexa decimal base="<<hex<<value<<endl;
Cout<<"Octal base="<<oct<<value<<endl;
}
Or
#include<iostream.h>
#include<iomanip.h>

17

Void main()
{
Int value=10;
Cout<<”’Decimal base="<<Setbase(10)<<value<<endl;
Cout<<"Hexa decimal base="<<Setbase(16)<<value<kend
Cout<<"Octal base="<<Setbase(8)<<value<<endl;
}
Output:
Decimal base=10
Hexa decimal base=a
Octal base=12
Setw() stands for set width. It is used to specify theimiim number of character
positions on the output field of a variable.
General syntax:
Setw(int w)
The above statement changes the field width tow,oly for the next insertion. The
default field width is O.
Example:
Int a=10;
Cout<<Setw(1l)<<a<<endl;
Cout<<Setw(10)<<a<<endl;
Output:
10
10
Setfill() manipulator function is used to specify aalént character to fill the unused
filed width of the value.
General syntax:
Setfill(char ch)
The above statement changes the fill characterTibd default fill character is a space.
Example:
Int a =10;
Cout<,Setfill(**");
Cout<<setw(5)<<a;

Output:
***lo
Setprecision() Is used to control the numbedigits of an output stream display of
a
floating point value.
General Syntax:
Setprecision (int p)

The above statement is used to set the precisiofidating point insertions to p. The
default precision is 6.

Example:
18

Float c=5/3;
Cout<<Setprecision(1l)<<c<<end;
Cout<<Setprecision(2)<<c<<endl;
Cout<<Setprecision(3)<<c<<end];
Output:
1.7
1.67
1.667
Endsis a manipulator used to attach a null terminatingracter (\O’) at the end of a string
Example:
Cout<<’Hello"<<ends<<"World”;

Output:
Hello World

Ws stand for white space. It is used to ignibie leading white space that precedes the
first field.
Example:

#include<iostream.h>
#include<iomanip.h>

Void main()

{

Char name[15];
Cout<<”Enter a line of text\n”;

Cin>ws;
Cin>>name,;
Cout<<name<<endl;
}
Output:
Enter a line of text
Hello world
Hello
Flush is used to cause the strassociated with the output to be completely
emptied.For output on theeser, this is not necessary as all output is
flushed automatically. Howevierthe case of disk file being copied to
another, it has to flush thépot buffer prior to rewinding the output file for
continued use.
Example:

#include<iostream.h>
#include<iomanip.h>
Void main()

19

{

Cout<<”Enter a line of text\n”;
Cout<<"Hello world\n”;
Cout.flush();

}

Output:
Enter a line of text
Hello world

Note: hex, dec,oct,ws,endl,ends and flush manipdasoe defined in stream.h. The other
manipulators are defined in iomanip Which mustriduded in any program.

Setiosflags manipulator function is used to control diffet input and output settings.
The 1/0 stream maintains a collection of flag bits

General Syntax:
Setiosflags(long int)
Resetiosflags performs the same function as that of the reswttion. The flags
representaed by the set bits in f are reset
General Syntax:
Resetiosflags(long 1)
Example:
#include<iostream.h>
#include<iomanip.h>
Void main()
{
Int value=10;
Cout<<Setiosflags(ios::showbase);
Cout<<Setiosflags(ios::dec);
Cout<<value<<end!;
Cout<<Setiosflags(ios::hex);
Cout<<value<<end|,
Cout<<Setiosflags(ios::oct);
Cout<<value<<end!;
}
Output:
10
Oxa
012

INPUT AND OUTPUT (1/0) STREAMFLAGS

To implement many of the above manipulators, |/@ans have a flag field that
specifies the current settings.

20

The flag names and their meanings are given below.

FLAG NAME MEANING

Skipws Skip white space during input

Right Left justification of output

Internal Pad after sign or base indicator

Dec Decimal base

Oct Octal base

Hex Hexa decimal base

Show base Show base for octal and hexa decimal ensmb
Show point Show the decimal point for all floatipgint numbers
Uppercase Shows uppercase hex numbers

Showpos Show ‘+’ to positive numbers

Scientific Use E for floating notation

Fixed Use floating notation

Unitbuf Flush all stream after insertions

Stdio Flush stdout, stderr after insertion

Argumentsfor setflags

FIRST ARUMENT SECOND
(FLAG NAME) ARGUMENT

los:: skipws
los::left los::adjustfield
los::right
los::internal
los::dec los::basefield
los::oct
los::hex
los::showbase
los::showspos
los::uppercase

21

los::showspoint

los::scientific los::floatfiled
los::fixed

los::Unitbuf
los::stdio

(@) Turning the bit format flag on

In order to change the state of the cout objed, s that represent its state must be
changed. The setf () function is invoked for settine bit format flags of the 1/Ostream.
General Syntax:

Cout.setf (flags to be set);

The bitwise OR (|) operator is used in the argunisehtf the setf() function in order to
change the bit format flag more than one.
Example:

Cout.setf (ios:: showbase|ios::showspoint|ios:: uase);

(b) Turningthe bit format flag off

The unsetf(() function is used to change the hitsctly off. This function takes exactly
one argument to turn off the bit pattern
General Syntax:

Cout.unsetf(flags to be turned off);
Example:

Cout.unsetf(los::uppercase);

The bitwise OR (]) operator is used in the arguntishin order to turn off more than one
bit format flag of the 1/O stream.

(c) Basefield bit format flag

The basefield format flag is used to display intege the proper base

los::dec shows integers in decimal format
los::oct shows integers in octal format
los::hex shows integer in hexadecimainat

Only one of the above can be set at any time. Thaseat flags control the base in
which numbers are displayed. By default, dec is set
General Syntax:

Cout.setf(iosd::dec,ios::basefiels);

Cout.setf(ios::oct,ios::basefield);

Cout.setf(ios::hex,ios::basefield);

(d) Show base bit format flag

22

The showcase format flag is used to display the barsoctal and hexadecimal numbers.
If showcase is set, this flag prefaces integragriisns with the base indicators used with C++
constants. If hex is set, for instance, an 0X balinserted in front of any integral insertion. §hi
flag is not set by default. The unsetf() functisnrivoked to undo the base setting.
General Syntax:

Cout.setf(ios::showbase);

(e) Showpos bit format flag

The Showpos format flag is used to display the sigan integer. If this flag is set, a “+”
sign will be inserted before any integral insertidnremains unset by default note that on
positive decimal output, the ‘+’ is assumed, butdafault it will not appear. If the number is
negative, the *-* sing will always appear. The uf@3dunction is invoked undo the setting of a
positive sign.

General Syntax:
Cout.setf(los::showspos);

(f) Upper case bit format flag

The uppercase bit format flag is used to displapwiuin uppercase. By default, the
following notations always appear in lowercase.

+ A hexadecimal number (a,b,c,d,e,f)
+ The base of hexadecimal number (0x)
« A floating point number in the scientific notatiG@3E3)

Theunsetf() function is used to revert back to lowercase.
General Syntax:
Cout.setf(los::uppercase);

(g) Formatting floating point numbers

The following sections explain how floating value® formatted using the different flag
settings in C++.

(h) Show point bit format flag

The show point bit format flag is used to show tleeimal point for all floating point
values. By default, the number of decimal posit®six.
General Syntax:

Cout.setf(ios::showpoint);

Theunsetf() flag is invoked to undo the showing of all decimalues of a floating point
number.

(i) Precision

23

The precision member function is used to displayftbating point value as defined by
the user.
General Syntax:

Cout.precision(int n)

Where n is the number of decimal places of thetifigavalue to be displayed.
Example:

Cout.precision(5);

(j) Float field bit format flag

Sometimes a floating point value may have to belai®d in scientific notation rather
than in fixed format.

= Scientific

When scientific is set, floating point values ansdrted using scientific notation.
There is only one digit before the decimal poinloieed by the specified number of
precision digits which in turn is followed by anpgrcase or a lowercase depending
on the setting of uppercase and the exponent value.

General Syntax:
Cout.setf(ios::scientific,ios::adjustfield);

= Fixed

When fixed is set, the value is inserted usingmatnotation with the specified number

of precision digits following the decimal point. rieither scientific nor fixed is set (the

default), scientific notation will be used when tgponent is less that or greater than
precision. Other wise, fixed notation is used.

General Syntax:
Cout.setf (ios::fixed, los::adjustfield);

(k) Adjust field bit format flag

The adjust field consists of three field settings
los::left left justification

los::right right justification

los::internalpad after sign or base indicator

= Left

Only one of these may be set at anytime. If lefiag the inserted data will be flush
left in a field of characters width wide. The ex$ace, if any, will be filled by the
fill character

General Syntax:
Cout.setf (los::left, los::adjustfield);

24

= Right
If right is set, the inserted data will be flusght.
General Syntax:
Cout.setf (los::right, los::adjustfield);

* Internal
If internal is set, the sign of a numeric valuelveé flush left while the numeric
value flush right and the area between them willtam the pad character.
General Syntax:
Cout.setf (los::internal, los::adjustfield);

() Fill and width

If the total number of characters needed to displdield is less than the current field
width, the extra output spaces will be filled witie current fill character. In C++, it is permitted
to use any character to serve as the fill charaBigrby default it is blank.

= Fill

The fill () function is used to specify a new filharacter. Once it is specified, it
remains as the fill character unless it is changed.

General Syntax:

Cout.fill (char ch);
Where ch is a character to be filled.

Example:
Cout.fill (**);
= Width
The width () function is used to specify the siz¢he data variable.
General Syntax:
Cout.width(int n);
Where n is a total field width of a variable.
Example:
Cout.width (10);
(m) Unitbuf
When Unitbuf is set, the stream is flushed aftegrgvinsertion. This flag is unset by
default
General Syntax:

Cout.setf (ios::unotbuf);

(n) Studio
25

This flag flushes the stdout and stderr devicesddfin Stdio.h. This is unset by default.
General Syntax:

Cout.setf (ios::stdio);
(o) Skipws

If set, leading white space is ignored on extracti®y default skipws is set.

CONTROL STATEMENTS

Control statement can be classified into three types
1. conditional Statements
2. lterative Statements
3. Breaking Statements

1. CONDITIONAL STATEMENTS

The conditional expressions are mainly used forist@c making. In the subsequent
sections, the various structures of the contraéstants and their expressions are explained. The
following statements are used to perform the tdskeconditional operations.

(i) If statement

The if statement is used to express conditionatesgions. If the given condition is true
then it will execute the statements or block; othee the control goes to the next

statement.
General Syntax:
If (expression)
{
Statement1;
Statement?2;
Statement;
}

If the expression is true then the statements wiftblock are executed.
Flow Diagram:

| False

Condition

l True
26

Statement

A

(ii) 1f-else statement

The if-else statements are used to express conditexpressions. If the given condition
is true then it will execute a statements (s); otiee another set of statements(s).
General Syntax:
If (expression)
{
Statement s1;
Statement s2;

Statement sn;
Else

Statement t1;
Statement t2;

Statement tm;

}

Flow Diagram

| False

Condition

l True

A 4

Statement Statement

A

If else lader
If (expression)

{

27

Else if(expression)

{
}
Else if(expression)
{
}
Else
{
}

(iif) Switch-case statement

Switch Statement is a special multiway decision maker timsts whether an expression
matches one of the number of constant values, eag@b accordingly.
General Syntax:

Switch (expression)

{

Case constant 1: statements;
Break:

Case constant2; statements:
Break;

Case constantn: statement;
Break;
Default: statements;

}

The expression whose value is being compared magnievalid expression including
the value of the variable, an arithmetic expressiogical comparison, a bitwise expression or
the return value from a function call, but not @ating point expression. The constants in each
of the case statements must obviously be of the saatch occurs, the statement following that
is executed. The statement can be either a sim@leeompound statement.

The value that follows the keyword case may only domstants; they cannot be
expressions. They may be integers or charactetspdiufloating point numbers or character
strings.

The last case of this statement which is calleddéfault case is optional and should be

used according to the program ‘s specific requirgmehe default statements will be executed
when the expression is not matched by any othescas

28

2. ITERATIVE STATEMENTS

Iteration is the process of repeating a statemerd group of statements a specified
number of times. It is also callédop statements.

The Iterative statements further classified int@ tiypes:Pre-test Iteration, Post-test
Iteration

(i) Pretest Iteration
A check before the iteration commences. Therefoeeetis possibility that the block is
never executed if the condition is not valid farétion at the very first encounter.

alge
————® | Condition
l True
Statement

Example: for loop, while loop
For loop
The for loop is the most commonly used statemer@+a. This loop consists of there
expressions.
The first expression is used to initialize the mdalue, the second to check whether or
not the loop is to be continued again and the tturdhange the index value for further
iteration.
General Syntax:
For (expression_1; expression_2;expression_3)
{
Statement 1;
Statement 2;

Statement n:

}

Where expression_1 is initial condition
expression_2 is test condition
expression_3 is incrementedesrementer

Example:

29

#include<iostream.h>
Void main()
{
For(int i=1;i<=10;i++)
Cout <<i<<"\t”;
}

Output:

1 2 3 4 56 7 8 9 10
while loop

while loop is used when we are not certain thatdloe will be executed. After checking
whether the initial condition is true or falseitlfs to be true, only then the block is executed.

The first expression is used to initialize the md@lue before the while statement, the
second to check whether or not the loop is to b#ilmoed using while statement and the index
value incremented or decremented within the block.

General Syntax:
While (expression)
{
Statement 1;
Statement 2;

Statement n;

}

Example:
#include<iostream.h>
Void main()
{
Int i=1;
While <i<=10)
{
Cout<<i<<"\t”;
[++:
}
}

Output:

1 2 3 4 5 6 7 8 9 10
(i) Post test Iteration

A condition is tested only after the block is extecll This ensures that the block is
executed at least once because the iteration tatimmcondition is tested only after the
execution of block.

30

Example: do-while
Do whileloop

Do while loop ensures that block is executed astleance because the iteration
termination condition is tested only after the axem of the block
General Syntax:

Do

{

Statement 1;
Statement 2;

Statement n;

While (expression);

l alge

Condition

l

True Statement

Example:
#include<iostream.h>
Void main ()

{

Inti=1;

Do

{

Cout <<i<<"\t";
[++:

}
While(i<=10);
}

Output:

1 2 3 4 5 6 7 8 9 10

31

3. BREAKING STATEMENTS

Loop perform a set of operations repeatedly uh8l ¢ontrol variable fails to satisfy the
test condition. The number of times a loop is répedds decided in advance and the test
condition is written to achieve this. Sometimesgwlexecuting a loop it becomes desirable to
skip a part of the loop or to leave the loop asis@m®a certain condition occurs.

Jumping can be done using break, continue or gateraents in any loops such as while
do or for loops.

Break Statement

The break statement causes control to pass tot#tensent following the innermost

enclosing while, do, for, or switch statement. Tieak statement is used to break the current
iteration.

Syntax:
Break;

Example:
#include<iostream.h>
Void main()
{
For(int i=1;i<=10;i++)
If(i==5)
Break;
Cout<<i<<"\t™;

}

Output:
1 2 3 4 5

Break statement is also use in switch-casesire.
Example:

#include<iostream.h>

Void main()

{

Int n;

Cout<<”Enter a number between 1to 4"<< endl;

Cin >>n;

Switch (n)

{

Case 1: cout<<”’One”;

Break;

Case 2: cout<<"Two”;

Break;

32

Case3: cout<<"Three”;
Break;

Case 4: cout<<”Four”;

Break;

Default: cout<<”Invalid Input”;

}
}

Output:
Enter a number between 1 to 4
2
Two
The output of the above program without any break statement,
Enter a number between 1 to 4
2
Two
Three
Four
Invalid Input

Continue Statement

The continue statement is used to repeat the speratmns once again even if it checks
the error. That is it causes the control to pagkeaend of the innermost enclosing while, do, or
for statement, at which point the loop continuattondition is re-evaluated.

General Syntax:
Continue;

Example 1:
#include<iostream.h>
Void main()
{
For(int i=1;<=10; i++)
{
If (i==5)continue;
Cout<<i<<"\t”;
}
}

Example 2:
#include<iostream.h>
Void main()
{
For(int i=1;i<=10;i++)
{
If(i==5)
Continue;
Cout<,i<<"\t”;

33

Output:

1 2 3 4 5 6 7 10
Goto Statement

Goto statement is used to alter the program execugquence by transferring control to
some other part of the program.

General Syntax:

Goto label;

Where label is a valid identifier used to label taegion such that control could be
transferred.

There are two ways of using the goto statements pnogram namely conditional goto
and Unconditional goto.

Conditional goto

The conditional goto is used to transfer the cdrdfdhe execution from one part of the
program to the other in certain conditional cases.

Example:
#include<iostream.h>
Void main()

{

Int x=10,y=20;

Int z;

If(x>y)

Goto en;

Z=X +Y,

Cout<<z;

En:
Cout<<”Unconditional™;

}

Output:
30
Unconditional goto

The unconditional goto statement is used justandfer the control from one part of the
program to the other part without checking any ool

34

Example

#include<iostream.h>
Void main()
{
Int x=10,y=20;
Int z;
Goto en;
Z=X +Y,
Couts<z;
En:
Cout<<”Unconditional™;
}
Output:
Unconditional

FUNCTIONS AND PROGRAM STRUCTURES

FUNCTIONS

A function is defined as a self contained block of code pleatorms a particular task. A
complex problem may be decomposed into a smaksihyemanageable parts of modules called
functions. Such function can called and used whenesquired. Functions are very useful to
read, write, debug and modify complex programs.yT¢ten also be easily incorporated in the
main program. In C++, the main() itself is a fupatithat means the main functions is invoking
the other functions to perform various tasks.

Any function can call any other function. A callfohction can call another function and
sometimes the function can call itself. A calleddtion can be placed either before or after the
calling function.

Writing function avoids rewriting the same code iagand again. Separating the code
into modular functions also make program easielettign and understand.
The main advantages of using a function are:
Easy to write a correct small function
Easy to read, write and debug a function
Easier to maintain or modify such a function
Small function tend to be self documenting and lyigbadable
It can be called ant number of times in any plath different parameters

A function consist the thee main parts
= Function Declaration (Prototype declaration)
= Function Definition
= Function Call

35

FUNCTION DECLARATION

The function refers to the type of value it woukturn to the calling portion of the
program. Any of the basic data types such as last fchar, etc. may appear in the function
declaration. When a function is not supposed tarneainy value, it may be declared as type void,
which informs the compiler not to save any temppispace for a value to be sent back to the
calling program.

General Syntax:

<return_data_type>function_name ([data_typeargth_deype arg2, ., data_ type argn]);
Where function_ mane can be any name conformitiggsyntax rule of the variables.
Argl, arg2, ... argn are Formal Arguments.

Example:
Void print(void);
Void pin(int, int);
Int naming (int, float);

FUNCTION DEFINITION

A function definition has a function header and tualy of the function. A function
header consist of the return data type, functme a parentheses pair containing zero or more
parameters and a body. Any parameter not declaredeén to be an int by default.

General Syntax:

Function Header

Function body

<return_data_type>function_name ([data_type arp_dgpe arg2, . , data_ type argn])
{

Body of the function;

Return value;
}

Return Statement

Return is used to terminate a function and retuwralae to its caller. The return statement
may also be used to exit a function without retogna value. The return statement may or may
not include an expression and that can appear amgwhithin a function body.

36

General Syntax:
Return;
Return(expression);
Example:
Return;
Return(5);
Return(5*9);
Return(i++);

FUNCTION CALL

A function can be called by the main function om®o other functions whenever
required. A function called by itself is called Resive function.

General Syntax:
Function_name(data_type argl, data_typearg2, .. naggt);
Where arg21, arg2, ..., argm are actual parameters.

ARGUMENTS

Any variable declared in the body of a functiors#d to be local to that function called
local variables. Any variable declared in the function headeraisl 0 be local to that function
calledformal arguments. Any variable invoked in the function calling eallactual arguments.
Other variables which are not declared either agiraents or in the function body, are
consideredjlobal variables.

Example:
#include <iostream.h>
Void print(int); /Prototype or Function Declaration
Int x=5; //Global variable x
Void main() /IMain function
{
Int n;
Cout<<”Enter how many stars”;
Cin>>n;
Print(n); /[Function calling with the actual argument
}
Void print(int t) //[Function with the formal argument t
{
Int /llocal variable | of the function pirin
For(i=1;<=t; i++)
{

Cout<<”*”<<”\t”;

37

}
}

TYPE OF FUNCTIONS

The user defined functions may classified in thkovang three ways based on the
formal arguments passed and the return statement.
Functions are classified into threetypes

1. Function without argument and return statement
2. function with argument and without return statement
3. function with argument and return statement

1. Function without argument and return statement

A function is invoked without passing any formag@ment from the calling portion of a
program and also the function does not return bagkvalue to the called function.
Example:

#include <iostream.h>

Void print (void);

Void main ()

{

Print ();

}

Void print () /[futien without arguments and return data type

Cout<<™\n *rrdrkrkrkkrkikkkkkrakxrd\n" [ffunction without return statement

}
Output

kkkkkkkkkkkkkkkkkkkhhkkkkk
(b) Function with argument and without return statement

A function is invoked with formal arguments frometlkalling portion of a program but
the function does not return back any value tcctikng portion.
Example:

#include<iostream.h>

Void print (int);

Void main ()
{
//main function
Int n;
Cout<<”Enter how many stars”;
Cin>>n;
Print (n);
/[Function calling with the actual argument
}

38

Void print (int t)
//[Function with argument without return data type
{

IntI;

For (i=1 ;< =t; i++)
{

Cout<<ﬂ*”<<”\t1l;

}

}

(C) Function with argument and return statement
Function is invoked with formal arguments from tdadling portion of a program which
return back a value to the calling environment.
Example 1:
/[Program for factorial of a number.
#include<iostream.h>
Long int fact (int);
Void main ()
{
Int n;
Cout<<"Enter the number’<<endl;
Cin>>n;
Cout<<"\nFactorial value is “;
Cout<<fact (n);
}
Long int fact (int t)
{
Long int f=1;
For (inti=1; i<=t; i++)
{
F=f*l;
}
Return (f);
}
Output:
Enter the number
5
Factorial value is 120
Example 2:
Find out the value of nCr
n!
nCr =

rt* (n-r)!
/[Program for factorial of a number.

39

#include<iostream.h>
Long int fact (int);
Void main ()
{
Intn,r;
Cout<<”Enter the n and r value’<<end];
Cin>>n>>r;
Cout<<"\nmCr value is “;
Cout<<fact (n)/(fact(nr-)/fact(r));
}
Long int fact (int t)
{
Long int f=1;
For(int i=1; i<=t; i++)
{
F=f*1;
}
Return (f);
}
Output:
Enter the n and r value
52
nCr value is 10

ACTUAL AND FORMAL ARGUMENTS

When a function is called, the compiler uses tingptate to ensure that proper arguments
are passed, and the return value is treated clytréety violation in matching the argument or
the return types will be caught by the compilethe time of compilation itself. The argument
may be classified under two groups: actual argusnandl formal arguments.

= Actual arguments
An actual argument is a variable or an expressamtained in a function call that
replaces the formal parameter which is a part efitimction declaration.
Sometimes, a function may be called by a portioa pfogram with some parameters
and these parameters are known as the actual anggime

» Formal arguments
= Formal arguments are the parameters present inciida definition which may also
be called as dummy arguments or the parametriabia@s. When the function is

invoked, the formal parameters are replaced bwtigal parameters.

Example:

40

#include<iostream.h>

void main ()
{
int add (int, int); //Prototype declaration
intx,y, z;
cin>>x>>y;
z=add (x,y); //Function calling with ActuadRameters x and y
cout<<z;
}
int add (int a, int b) //Function with Formal Angpents a and b
{
return (a+b);
}

LOCAL AND GLOBAL VARIABLES

The values changed during the execution of a progralled variable. The variable is
generally classified into two types: local and glbkariables.

= Local variables
Identifiers declared as label, const, type, vaaal@nd functions in a block are said
to belong to a particular block or function andsiaédentifiers are known &scal
variables. Local variables are defined inside a function klar a compound
statement.
Local variables are referred only the particulart p&a block or a function. Same
variable nhame may be given to different parts dfirection or a block and each
variable will be treated as a different entity.

Example:
void fn(int t)
{
intlj; /I i dn) are local variables.
}

Global variables
Global variables are defined outside the main foncblock. These variables are
referred by the same data type and by the same tramegh out the program in
both the calling portion of a program and in tbhadtion block. Whenever some
of the variables are treated as constants in Ihamain and the function block, it
is advisable to use global variables.

Example:
int x, y=4; /I x and y are gédlvariables
void main()

{
test();

41

}
void test()

{

}
Output:
4
Example:
#include<iostream.h>
void circle (int);
const float pi=3.14; //Global variable pi

cout<<y;

void main()

f:ircle(l);

ioid circle(int t)

{ cout<<pi*t*t;
Output}:

3.14
DEFAULT ARGUMENTS

In the function prototype declaration, the defardtues are given. Whenever a call is
made to a function without specifying an argumérte program will automatically assign
values to the parameters from the default funcpoototype declaration. Default arguments
facilitate easy development and maintenance ofrpros.

General syntax:
<return_data_type> function_name (data_type argliirevdata type arg2=value);
Examplel:

#include <iostream.h>
Int add (int a=4, int b=6);

Void main ()

{

Int a, b;

Cin>>a>>b;

Cout<<add () <<endl; I/l Pasgilegault values

Cout<<add (a) <<end]; // Passing argument and the another is default
Cout<<add (a, b) <<endl; // Passmgytivo arguments

}

Int add (int a, int b)

{

Return (a +b);

42

}

Output:

10 20

11

16

30
Note: The function call without argument is valid. Thefault arguments are given only in the
function prototypes and should not be repeatelarfunction definition.

MULTIFUNCTION PROGRAM

A function may call one more function and so onefgnhis no restriction in C++ for
calling the number of functions in a program. ltadvisable to break a complex problem into
smaller and easily manageable parts and then defiaection. Control will be transferred from
the calling portion of a program to the called fume block. If the called function is executed
successfully, then control will be transferred bagkthe calling portion of a program. In this
type of multifunction program, transfer of contdoétween the calling portion and a called
function block is always in overhead.

General Syntax:
Function 1()

{
Void function 4();

Function4 ();

}

Function2 ();

{
Void function3 ();
Function3 ();

}

Function3 ()

{

}

Function4 ()

{

43

}

Example:

Void functionl (void);
Void function3 (void);
#include<iostream.h>
Void main ()

{

Functionl ();
Function3 ();

i/oid functionl ()

i/oid functionl ()

{ Void function2 (void);
Cout<<"Function 1 called"<<endl;
Function2 ();

i/oid function2 ()

{ Cout<<"Function 2 called’<<end|;

{/oid function3 ()

{ Cout<<”Function 3 called’<<endl;

Output}:

Function 1 called

Function 2 called

Function 3 called
Note: we can not call the function function2 in main d¢tion, because of the function2
prototype is declared in functionl.

SORAGE CLASS SPECIFIERS

The storage class specifier refers to how widely known among a set of functions in a
program. In other words, how memory reference igexh out for a variable. Every identifier in
C++ not only has a type such as integer, doublesandn but also storage class that provides
information about its visibility, lifetime and lotan. Normally, in C++, a variable can be
declared as belonging to any one of the followingugs.

1. Automatic variable

44

Internal or local variables are the variables whach declared inside a function. Instead,
they are more often referred to as automatic due fdctt that their memory space is
automatically allocated as the function is entemed released as soon as it leaves. In other
words, automatic variables are given only temporagmory space. They have no meaning
outside the function in which they are declarece pbrtion of the program where a variable can
be used is called the scope of that variable. Aatanvariables can be declared not only at the
beginning of function but also at the beginningaaompound statement (also called a block).

Local variables are given the storage class autdelfigult. One can use the keyword auto
to make the storage class explicit but no one dsies,a declaration

General Syntax:
Storage_ class data_ type varl, var2... Varn;

Here the storage class is an automatic, so it eamritten as

Auto int x, y, z;

Auto float al, a2;

Auto char namel;

But the above declaration can also be written as

Int x, y, z;

Float al, a2

Char namel;

However, both the declarations are same. The keynaato used only if one desires to
declare a variable explicitly as an automatic J@ea

2. Register variable

Automatic variables are stored in the memory. Aseasing a memory location takes
time (much more time than accessing one of the mathregisters) one can make the
computer to keep only a limited number of variablestheir registers for fast processing

whenever some variables are to be read repeatesdlgl, they can be assigned as register
variables.

General Syntax:
register data type varl, var2 ...varn;
The keywordregister is used to declare that the storage class of thabla is register
type.
For a limited number of variables it is possiblenake the computer to keep them

permanently in fast registers. Then the keywordstegis added in their declaration.
Example:

Function (register int n)

{

Register char temp;

45

If possible, machine registers sometimes callediractators, can be assigned to the
variable n and temp, which would increase the spidtere are not enough register variables
then the request will simply be ignored.

3. Staticvariable

Static variables are defined within a function dralve the same scope rules of the
automatic variables but in the case of static et the contents of the variables will be
retained throughout the program. It preserves theigus iteration value.

General Syntax:
Static data type varl, var2 ... varn;
The static keyword is used is used to define theage class as a static variable.

Example:
Static int x, y;
Static int x=100;
Static char ch;

4. External variable
5.

Variables which are declared outside the main atked external variables and these
variables will have the same data type throughoeiprogram, both in main and in the function.

This implicit initialization is convenient and iaken advantage of in countless programs,
but explicitly initializing global variables mak@sograms more readable

General Syntax:
Extern data type varl, var2 ... varn.

RECURSIVE FUNCTION

A function which is calls itself directly or indicdly by a number of times is known as the
recursive function. Recursive function are very useful while condiingcthe data structures like
linked lists, double linked lists and trees. Theyea distinct difference between normal and
recursive functions. A normal function will be irked by the main function whenever the
function name is used, whereas the recursive fometill invoked by itself directly or indirectly
as long as the given condition satisfied.

Example:

#include <iostream.h>

Void funl (void);

Void main ()

46

Funl ();

}
Void funl ()

{
Funl .(').;' /[Function calls recursively
}
PREPROCESSORS

Preprocessor is a program that modifies the C++csoprogram according to directive
supplied in the program. The original source progres usually stored in a file. The
preprocessor does not modify this program file,dvaaites a new file that contains the processed
version of the program. This new file is then sutiedi to the complier. The preprocessor make
the program easy to understand and port it frompdaiorm to another. A preprocessor carries
out the following actions on the source file befdres presented to the compiler. These actions
consist of

* Replacement of defined identifiers by pieces oftéh.

» Conditional selection of parts of the source file

* Inclusion of other files

* Renumbering of source files and renaming of sofile itself.
The general rulesfor defining a preprocessor are

a) all preprocessor directives begin with #

b) the preprocessor directive is terminated not byicaion

c) Only one preprocessor directive can occur in a line

d) The preprocessor directives may appear at any piaamey source file:

Outside/inside function or inside compound statdsien

The common C++ preprocessor directives and their usesare

DIRECTIVE |USES

#include Insert text from another file

#define Define preprocessor macro

#undef Remove macro definitions

#if Conditionally include some text based on théue
of the constant expression

#ifdef Conditionally include some text based on prede
macro nam

#ifndef Conditionally include some text with thense of
the test opposite to that of #ifdef

#else Alternatively include some text, if the poes #if,
#ifdef or #ifndef tests failed

#elif Combination of #if and #else

#endit Terminate conditional te

#line Give a line number for compiler messages

47

| #error | Terminate processing early

(&) Smple macro Definitions

A macro is simply a substitution string that isqad in a program.
Example:

#include<iostream.h>

#define TRUE 1

#define FALSE O

Void main ()
{
Cout <<TRUE;
}
Output
1

(b) Macro with Parameters

A more complex from of a macro definition declatBe names of formal parameters
within parentheses, separated by commas.

General Syntax:

#define name (varl, var2... varn) substitution_ sgtrin
Example 1:

#define PRODUCT (X, y) {(X) * (y)}

Macros operate purely by textual substitution dfetts. The c++ compiler pares the
source program only after the completion of the mmaexpansion processes are completed.
Hence, care must be taken to get the desired result
Example 2:

#define prod(x) x*x;

#include <iostream.h>

Void main ()

{

Cout <<prod (10);

}

Output:

100

(c) Other preprocessing Techniques

As the preprocessor merely substitutes a strirtgxdffor another without any checking a
wide variety of substitutions are possible and kernicis possible to make any typed source
program look like another language. To illustrdte above, if someone has strong liking for
Pascal and its syntax, then many Pascal symbolbearsed in C++ by just including as many
#define statements so as to convert them to vatiedd §ymbols before the compilation.

48

General Syntax:
#define identifiername keyword
Example:

#define begin {
#define End}
#define writeln printf
#define program main
#include <iostream.h>
#include<Stdio.h>
Program ()
Begin
Writeln (“Pascal Output\n”);

End

Output:
Pascal Output

(d) Conditional compilation

The preprocessor conditional compilation commanidsvaines of the source text to be
passed through of eliminated by the preprocesstin@basis of a computed condition.

The following are the preprocessor conditional commands
#if
#else
#endif
#elif
The above commands are used in the following way
#if constant expression
Statements
#else
Statements
#endif

The#elif command

The #elif command is fairly a recent addition to+C+t is supported by very few
compilers only. The #elif command is like a comlbima of #if and #else. It is used between #if
and #endif in the same way as #else but has aardrestpression to evaluate in the same way as
#if.

General Syntax:
#if constant expression

Statements
#elif constant expression

Statements
#elif constant expression

49

Statements
#else

Statements

#endif

A header file contains the definition, global vat&adeclaration, and initialization by all
the file in a program. Header files are not contp#eparately. The header file can be included
in the program using the macro definition # incledenmand. A header file can be declared as a
first lin any C++ program. For example, the staddaput/output statements.

The header file can be declared in one of the following ways:

#include<iostream.h>

or

#include “iostream.h”

Example: for user defined header file
void test ()

{

int i=10;
cout<<l;

}
save the above file named test. H in the foldélildte
Thefollowing file use the method test

#include<iostream.h>

#include<test.h>

void main ()

{
test ();

}
STANDARD FUNCTIONS

Standard libraries are used to perform some pmeel@foperations on characters, strings,
etc. the standard libararies are invoked usingefit names such as library functions, built in
functions or predefined functions. As the termdiyr function indicates, there are a great many
of them, actually they are not part of the languaddany facilities that used in C++ program
need not be part of the C++ language. Most of thé mpilers support the following standard
library facilities.

* Operation on character

» Operatons on string

* Mathematical operations

e Storage allocation procedures
e Input/output operations

ARRAYS

5

An Array is a group of related data items that share a camnane. the individual
values in an array are calledments. Array elements are also variables.

Arrays are sets of values of the same type, whaeha single name followed by an
index. Whenever an array name with an index appears expression, the compiler assumes
that element to be of an array type.

ARRAY DECLARATION

Declaring the name and type of an array and settiaghumber of elements in the array
is known as dimensioning the array. In the arraglatation, one must define the type of the
array, name of the array, number of subscripthen drray and the total number of memory
locations to be allocated.

General Syntax:

[Storage class] data_ type array- name [exprejsion
Where storage class refers to the scope of thg aariable such as external, static or an
automatic. It is an optional one
Data_ type is used to allocate the type of the nmgrfiot, float, char, etc)
Array _name is the name of the array
Expression is used to declare the size of the mgromations required for
further processing by the program which is alwaysitpve.
Example:
Int marks [300]; //a mark of 300 integer numbers
Static char page [8]; //a static array which cassi$ 8 characters

ARRAY INTILIZATION

The automatic array cannot be initialized, unlikeomatic variables. However external
and static arrays can be initialized if is desifElde initial values must appear in the same order
in which they will be assigned to individual arregments, enclosed in braces and sparated by
commas.

General Syntax:

Storage_ class data_ type array_ hame [expressif@¢mentl, element2, element};
Example:

#include<iostream.h>

void main ()

{

int values [7] = {10, 27, 98, 33, 44, 53, 34},
for (int i=0; i<7; i++)
cout<< values [i]
}
Output:
values [0] = 10
values [1] = 27

51

values [2] = 98

values [3] = 33

values [4] = 44

values [5] = 53

values [6] = 34
Note: Array index always start with 0
Program: A program to read n numbers from the keyboardtdoesit in an one dimensional
array and to display the contents of that arraynelgs.

#include<iostream.h>

void main ()
L
int n;
int x [100];
cout<<”Enter how many numbers\n”;
cin>>n;

cout<<™\n Enter the elements”;
for (int i=0; i<n; i++)

cin>>Xx[i];

cout<<”\n Contents of the array/n;
for (int j=0; j<n; j++)

cout <<x[j] <<"\t”;

Output:
Enter how many numbers
3
Enter the elements
56-2
Contents of the array
5 6 -2

Program: A program to read n numbers and find out the biggesber in the given array
#include<iostream.h>

void main ()
{
int n; big=0;
int x [100];
cout<<”Enter how many numbers\n”;
cin>>n;

cout<<"\n Enter the elements”;
for (int i=0; i<n; i++)
cin>>Xx[i];
cout<<”\n Contents of the array/n;
for (int j=0; j<n; j++)
{
if (big<x][j[)
big=x[j];
52

}

cout <<x[j] <<"\t”;

}

Enter how many numbers
3
Enter the elements
53-2
The biggest number is 5
Program: A Program to read n numbers and to sort them iaraing order.
#include<iostream.h>

Output:

void main ()
L
inti, n;
int x [100];
cout<<”Enter how many numbers\n”;
cin>>n;

cout<<"\n Enter the elements”;
for (int i=0; i<n; i++)

cin>>Xx[i];

cout<<”\n Contents of the array/n;
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

{ it (X[>X[I;
{ int temp=x[i];
X[i] =x[;
X[j] =temp;
}
}

cout<<"The Ascending order becomes\n”;
for (i=0; i<n; i++)
cout <<x[j] <<"\t”;

Output:
Enter how many numbers
3
Enter the elements
45 3-2
The Ascending order becomes
-2 3 45

ARRAYSAND FUNCTIONS

The entire array can be passed on to a functionl @may name can be used as san
argument for the function declaration. Bo subssript square brackets are required to invoke a
function using arrays.

General syntax:
Int sum array (int [], int max)

{
}

Program: A program to read a set of numbers from the kagdband to sort out the given array
of elements in ascending order using a function.
#include<iostream.h>

Statements:

void main ()
L
inti, n;
int x [100];
cout<<”Enter how many numbers\n”;
cin>>n;

cout<<"\n Enter the elements”;
for (int i=0; i<n; i++)

cin>>Xx[i];

asc (x,n);

}

void asc (int x[], int n)

{

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

{ if (X[I1>X[]];
: Int temp=Xx]i];
X[i] =x[;
X[j] =temp;
}
}

cout<<"The Ascending order becomes\n”;
for (i=0; i<n; i++)
cout <<x[j] <<"\t”;

Output:
Enter how many numbers
3
Enter the elements
53-2
The Ascending order becomes
2 3 4

54

MULTIDIMENSIONAL ARRAYS

Multidimensional arrays are defined in the same mearas one dimensional arrays,
except that a separate pair of square bracketseguared for each subscript. Thus, a two
dimensional array will require two pairs of squdmackets; a three dimensional array will
require three pairs of square brackets and so on.

General syntax:

[storeage clddlata_type array _name[expressionl][expression2]..rgsgionN];
Where storage_class refers to the scope of thg @argable such as external, static or an
automatic. It is an optional one

Example:

data_type is used to allocate the type of the meitiot,float,char,etc)

array_name is the name of the array

expressionl, expression2, ..., expressionN refetiseianaximum size of the each
arrayl locations.

float x[10][10];

MULTIDIMENSIONAL ARRAYSINITIALIZATION

Similar to one dimensional array, multidimensioaalays can also be initialized, if one
intend to assign some values to these elemengholild be noted that only external or static
arrays can be initialized.

Example 1:

Output:

Example 2:

#include<iostream.h>
void main()
{
intl, j, X[2][2]={1, 2, 3, 4};
for(i=0; 1<2; i++)
for(j=0; j<2; j++)
cout<<"\nValues of “<i<<”,"<<j<<"is\t"<<x]i][i];

}

Values of 0,0 is
Values of 0,1 is
Values of 1,0 is
Values of 1,1 is

A WN P

#include<iostream.h>
void main()

55

Output:

Program: A program to read an n x m matrix and print thereats in matrix form.

{
int 1, j, X[0][2]={1,2};
for(i=0; 1<2; i++)
for(j=0; j<2; j++)
cout<<"\nValues of “<i<<”,"<<j<<"is\t"<<x([i][i];

}

Values of 0,0 is
Values of 0,1 is
Values of 1,0 is
Values of 1,1 is

OONPF

#include<iostream.h>
void main()

{

Output:

intl,j, ,n,m, a[10][10];

cout<<"\nEnter the number of rows and columns”;
of rows and columns”;

cin>>n>>m;

cout<<”/nEnter the values one by one”;

for(i=0; i<n; i++)

for(j=0; j<m; j++)

cin>>ali][j];

cout<<™\nThe matrix become..\n";

for(i=0; i<n; i++)

{
for(j=0; j<m; j++)

cout<<a[i][jl<<"\t”;
cout<<endl!;

}

Enter the number of rows and columns

23

1

2

3

4

5

6

The matrix becomes...

1 2 3

4 5 6

56

CHARACTER ARRAY

The procedure for declaring character array is atntioe same as for other data types
such as integer or floating point. Once can dedla@echaracter array be means of alphanumeric
characters.

General syntax:

[storeage cldsdlata_type array _name[expressionl][expression2]..rgsgonN];
Where storage_class refers to the scope of the amaable such as external,
static or an automatic. It is an optional one
data_type is used to allocate the type of the megifiot,float,char,etc)
array_name is the name of the array
expression is used to declare the size of the metooation required for further
processing by the program which is always positive.
Example:
char name[10];
The basic structure of a character array is

P ITJHTAJS [V]T [\O]

Each element of the array is placed in a definieenory space and each element can be
accessed separately. The array element should gimdhe null character as a reference for the
termination of a character array.

Initializing the character array
char color[3]= “RED”;
char name[8]= “JTHASVT”,

The character arrays always is placed in a defmigenory space and each element can
be accessed separately. The array element shodld/iémthe null character as a reference for
the termination to accommodate the character.

Example:

#include<iostream.h>

void main()

{

char name[5]= “Ravic”;
for(int i=0; i<5; i++)

{
Cout<<’name[‘<<I<<"|\t"<<name(i];
}
}
Output:

Name[0] R
Name[1] a
Name[2] %

57

Name[3] [
Namel[4] C

Program: A program to read a line from the keyboard andis$pldy the contents of the array
on the screen

#include<iostream.h>

#define max 80

void main()

{
char line[max];
cout<<"\nEnter a line of text\n”;
cin.get(line,max,”\n); //read a line upto new line
cout<<”Answer is"<<end|;
cout<<line;
int i=0;
while(line[l]'="\0)
++;
Cout<<"\nNumber of characters\t"<<i;

}
Output:
Enter a line of text
Answer is
Welcome My Dear friends
Number of characters 23
POINTERS

A pointer is a variable which holds the memory &ddrof another variable. Sometimes,
only with the pointer a complex data type can bdated and accesed easily.

Variable Pointer radnle
Quantity P
179 5600
5{500 5618
Advantages

» It allows to pass variables, arrays functionspggiand structures as function arguments
* A pointer allows to return structured variablesrirbunctions

» It provides functions which can modify their cafliarguments

* It supports dynamic allocation and deallocatiomeimory segments.

* With the help of a pointer, variables can be sveappithout physically moving them.

58

* It allows establishing links between data elememtobjects for some complex data
structures such as linked lists, stacks, queuearpirees, tries and graphs.

* A pointer improves the efficiency of certain ro@m

A pointer variable consists of two parts

Pointer Address
Operator Operator

Pointe Operator

Pointe variables contain addresses that belong separate data type, they must be
declared as pointers before we use them.

General syntax:
data-type *ptr_name;
where * tells that the variable ptr_name is a pminariable.
ptr_name needs a memory location
ptr_name points to a variable of type data type.
Example:
Int *p;
declares the variable p as a pointer variablegbits to an integer data type.

Address Operator

Once a Pointer variable has been declared, it eem#&de to point to a variable. An
address operator can be represented by a comlmrati® with a pointer variable. The & is a
unary operator that returns the memory addrestssadgerand. A unary operator requires only
one operand.

Example:
p=&ptr; // p receives the address of ptr

pointer Expression

a pointer is a variable data type and hence thergemule to assign its value to the
pointer is same as that of any other variable tyqte.

Example:

int x,y;

int *ptrl, *prt2;

ptrl=&x; /IThe memory address of vareaklis assigned to the pointer //variable

ptrl.

ptr2=*ptrl; /[contents of the pointer valiaptrl is assigned to the variable y, not
The memory address.

y=*ptrl; /[The content of the pointeradle ptrl is assigned t the
/Ivariable y, not the n@mnaddress.

ptrl=&x;

59

ptr2=ptrl; /laddress of ptrl is assigneqtta.
Program: A program to demonstrate pointer operations

include<iostream.h>

void main()

{
int x=10, y=20;
int *ptrl, *ptr2;
ptrl=&x;
ptr2=4&y;
cout<<”address of x\t"’<<ptrl<<endl;
cout<<”address of y\t'<<ptr2<<endl;
cout<<"value of x using pointer\t’<<*ptrl<<endl;
cout<<"value of y using pointer\t’<<*ptr2<<end|;

}
Output:
address of x 0xc40fff4
address of y 0xc40fff2

value of x using pointer 10
value of y using pointer 20

program: A program to assign the pointer variable to anopiménter and display the contents of
both the pointer variables.

#include<iostream.h>

void main()

{
int x=10;
int *prtl, *ptr2;
ptrl=&x;
ptr2=ptrl,;

cout<<”address of x using the pointer ptri\t"<<ptsendl;
cout<<"address of x\t using the pointer ptr2”"<<endl|
cout<<"value of x using pointer ptrl\t"<<*ptrl<<eind
cout<<"value of x using pointer ptr2\t"<<*ptr2<<eind

}

Output:
address of x using the pointer ptrl XcA1fff4
address of x using the pointer ptr2 XcA1fff4
value of x using pointer ptrl 10
value of x using pointer ptr2 10

POINTER ARITHMETIC

60

As a pointer hold the memory address of a variaBteme arithmetic operations can be
performed with pointers.

Pointer Arithmetic operators

Addition +
Subtraction -
Incrimination ++
Decrementation --

Pointers are variables. They are not integer, ey tan be displayed as unsigned
integers. The conversion specifier for a pointexdded and subtracted.
Example:
ptr++ causes the pointer to be incrementednbuby 1.
Ptr-- causes the pointer to be decrementeddity 1.
Program: A program to display the memory address of a véiabing pointer before
incrementation and after incrementation.
#include<iostream.h>
void main()
{
int x=10;
int *ptrl,;
ptri=&x;
cout<<”Address of ptrl<<endl;
ptrl++;
cout<<"The next location after ptri\t"<<ptrl<<endl;
output:
address of ptrl 0xc3bfff4
the next location after ptrl 0xc3bfff6
summary of pointer arithmetic

POINTER DESCRIPTION
ARITHMETIC
Ptr++ Ptr=ptr+sizeof(data_type)

use original value of ptr and then ptr is increreerdafter
statement execution

++ptr Ptr=ptr+sizeof(data_type)
use original value of ptr is incremented beforedtagement
execution

Ptr-- Ptr=ptr-sizeof (data_type)

use original value of ptr and then ptr is decremeé @ifter
statement execution

--ptr Ptr=ptr-sizeof (data_type)
use original value of ptr decremented before thtestent
execution

*ptr++ *(ptr++)

retrieve the content of the location pointed tgobynter arid

61

then increment ptr

*++ptr *(++ptr)

increment pointer and then retrieve the conteth@ihew
location pointed to by ptr.

(*ptr)++ Increment content of the location pointagptr. For pointer
type content, use pointer arithmetic else use stahd
arithmetic

++*ptr ++(*ptr)

increment the content of the location pointed tpbry
depending on the type of the con

-*ptr —(*ptr)

decrement content of the location pointethygtr dependir
on the type of the conte

*ptr-- *(ptr--)

retrieve the content of the location pointed tghryand ther
decrement pt

*--ptr *(--ptr)

decrement ptr, then retrieve the content of the loeation
pointed to by ptr

(*ptr)-- retrieve content *ptr of the location péed to by ptr, then
decrement the content of the location; ptr is maingec

=)

POINTERS AND FUNCTIONS

Pointers are very much used in a function declamatsometimes only with a pointer a
complex function can be easily represented andsaede The use of the pointers in a function
definition may be classified into two categoriesll®y value and Call by value reference.

CALL BY VALUE

Whenever a portion of the program invokes a fumctith formal arguments, control
will be transferred form the main to the callinghétion and the value of the actual argument is
copied to the function. Within the function, thewsd value copied form the calling portion of
the program may be altered or changed. When thi&ataes transferred back from the function
to the calling portion of the program, the altexedues are not transferred back. This type of
passing formal arguments to a function is techhjidalown as call by value.

General syntax:
Void main ()

Void funct(int, int);

Void funct(int a, int b)
{
62

Program: A program to interchange two numbers usingngtion swap and the parameters
are of that function are values.
#include<iostream.h>
void swap(int, int);

int x,y; /Ix and y are declaredyfsbal variables.
void main()
{
cout<<”Enter the x and y value for swapping”"<<endl;
cin>>x>>y;
swap(x, y);

cout<<"x value is"<<x<<endl;
cout<<"y value is"<<y<<end|;
}
void swap(int a, int b)
{
x=Db;
y=a,

}

Enter the x and y value for swapping
76

78

X value is 78

y value is 76

Output:

CALL BY REFERENCE

When a function is called by a portion of a progrdime address of the actual arguments
is copied onto the formal arguments, though they bwreferred by different variable names.
The content of the variables that are altered withe function block are returned to the calling
portion of a program in the altered form itself, the formal and the actual arguments are
referencing the same memory location or addre$sdc@lall by Reference.

When an argument is passed by value, the dataist&opied to the function. Thus, any
alteration made to the data item within the funct® not carried over into the calling routine.
When an arguments passed by reference, the adufrdss data item is passed to the function.
The contents of that address can be accessed, feglgr within a function or within a calling
routine. Moreover, and change that is made to @ta dem will be recognized in both the
function and the calling portion of the program.u§hthe use of the pointer as a function
arguments permits the corresponding data item ttbeed globally form with the function.

General syntax:
Void main ()

63

Void funct(int *x, int *y);
Int x=10; y=20;

Funct(&x, &y) /[call by Reference

}
Void funct(int *x, int *y)

Program: A program to interchange two numbers usingnation swap and the parameters
are of that function are values.
#include<iostream.h>
void swap(int*, int*);
void main()
|
int x, y;
cout<<”Enter the x and y value for swapping”"<<endl;
CIN>>X>>Y;
swap(&x, &y);
cout<<"x value is"<<x<<endl;
cout<<"y value is"<<y<<endl;
}
void swap(int a, int b)
{
Int temp;
temp=*a;
*a:*b;
*b=temp;

}

Enter the x and y value for swapping
98

23

X value is 23

y value is 98

POINTERS TO FUNCTIONS

Output:

A pointer to a function must be declared to be imtpo to the data type returned by the
functions, like void, int, float and so on. In atioi, the argument type of the function must also
be specified when the pointer is declared. The rasji declaration is a list of formal
arguments, separated by commas and enclosed intipases.

64

General Syntax:
return_ type (*variables)(list of parameters);

Example:
Void (*ptr)(float float, int); //a pointer to a fugtion return void and takes the
formal arguments of two float and one int.
Float (*ptr)(char, double, int, flat); //returnsflmating point value and taks the
formal arguments of char, double, int and float.
Program:
#include <iostream.h>
Void main ()
{

Float add (float, float,); //Function declaration
Float (*ptradd)(float, float); // pointer to funot declaration
Ptradd &add ;
Int a, b;
Cin>>a>>b;
Cout <<(*ptradd)(a, b);
}
Float add (float x, float y)

{

}
Output:

47
11

Return (x +y);

PASSING A FUNCTION TO ANOTHER FUNCTION

C++ allows a pointer to pass one function to anmo#isean argument.

General Syntax:
Return _ type function_ name (ptr_ to_ fn (othguanents);

Example:

Float calculation (float(*) (float, float), floafloat);

When the function calculation return a type float @akes the formal argument of a
pointer to another function and two other floateaypAs a pointer to function declaration itself is
a pointer data, it returns a type float and takésraal argument of two floating point values.
Program:

#include <iostream.h>
Void main ()
{

Float add (float, float,); //Function declaration

Float action(float (*)(float, float,), float, flogt

Float (*ptradd)(float, float); // pointer to funom declaration

65

Ptradd &add ;

Int a, b;

Cin>>a>>b;

Cout <<(*ptradd)(a, b);
}
Float add (float x, float y)

{
Return (x +y);

}
Float action (float(*ptradd)(float, float), float Roat y)

{
Float answer;
Answer=(*ptradd)x, V);
Return (answer);

}

Output:

45
9

POINTERS AND ARRAYS

Arrays are similar to pointers except pointer aaable that can appear on the left side
of an assignment operator. The array name is aamrnand cannot appear on the left side of an
assignment operator. In all other respects, batptinter and the array version are the same.

Pointer and One Dimensional array

In C++, pointers and one dimensional arrays hawdoae relationship. Consider the
following valid declaration,

Int value[10];

Int *ptr;

Where the array variable value is an array typd, tae address of the first element can
be declared as value[0]- which holds the addreskdaeroth element of the array value. The
pointer variable ptr is also an address, so théad®®n value[0] and ptr is same as both hold
address.

Thefollowingis valid assignment

Ptr=&value]0];

The address the zeroth element is assigned tanéepeoiariable ptr.

If the pointer is incremented to the next data eleinthen the address of the incremented
value of the pointer will be same as the valuéhefriext element.

Ptr+1 equals value[1]

Ptr+ 2 equals value[2]

66

Ptr+n equals value[n]
And also
*ptr equals & value[0]
Program: A program to display the content of an array usimgpinter arithmetic.
#include<iostream.h>
Void main ()
{
Int a [4]={12, 23, 34, 45};
For(int i=0;i<<4; i++)
Cout<<"value="<<*((a) +(I))<<endl;

}

Output:
Value =12
Value =23
Value =34
Value =45

Pointer and Multidimensional Array

A pointer to an array contains the address of it# &€lement. In an one dimensional
array, the first element is &[0]. In a two dimensab array, it is

&value [0][0]

Example:
Int value [][];
Int *ptr,;
Ptr=value;

The address of the zeroth row and zeroth columimeftwo dimensional array value is
assigned to the pointer variable value.

Suppose, if ptr++ is written, the pointer varialél be incremented to the next data
element in the two dimensional array that is eqoavalue[0][1] because a two dimensional
array is stored by rows. So the following equaktyrue.

Ptr+1 =&value[0][1];

Example:
float value[20[30]
float *ptr 1;
ptr=&value[0][0];//Pointer initialization
ptr+4 = &value [0][4];
[tr+30 = &value[1][O];

If sis a 2 by 3 array as defined above, then #pgession s[1[2] is expressed as *(*(s+
1)+2) which is evaluated in the following order
S
S+1
*s(s+1) +2
((st1)+2)

Program:

67

#include<iostream.h>
Void main ()
{
Int a[2][3]={{11, 12, 13}, {14, 15, 16}};
Int *ptr;
Int1, j, n, m, temp;
N=2;
M=3;
Cout<”\n Contents of the array’<<endl,
For(i=0;i<n; i++)
For (j=0;j<m; j++)
Cout<<*(*a+ i)+j)<<"\t";
}
Output:
Contents of the array
11 12 13 14 15 16

POINTERS AND STRINGS

Many string operations in C++ are usually perforrbgdusing pointers to the array and
then using pointer arithmetic. As strings tend @calocessed strictly in sequential order, pointers
use the obvious choice. Strings are one dimens@mal/s of type char. A string is terminated
by null character or \Q’ String constants are teritin double quotes.

General Syntax:
Data_ type *pointer_ variable="value”;
Example:
Char *s="Hello world” //s is a character pointesipting to the characters Hello world
Program: A program to read a string and print the charaaee by one.
#include<iostream.h>

Void main ()
{
Char *ptr;
Cin>>ptr;
While(*ptr! =NULL)
{
Cout<<*ptr<<\t”;
Ptr++;
}
}
Output:
Welcomes
W e I C O m e

ARRAYSOF POINTERS

68

The pointers may be arrayed like any other data.typ

General Syntax:
Data_ type *pointer_ name([size];
Example:
The declaration for an integer pointer array oé€id is
Int *ptr[10];
Makes
Ptr[O], ptr[1], ...ptr[10] an array of pointers.
Example2:
Int [10],b[10],c[20];
Int *ptr[4];
Where ptr is an array of pointers that can be usegoint to the first elements of the
arrays a, b and c,
The following declaration isvalid for the two dimensional arrays,
Char *text [row][col];
For array of characters to pointes.
Example:
Char *name[10][15];
Name[1][]= “this”;
Name[2][]= “World”;

Program: A program to display the contents of pointers usingarray of pointers.
#include<iostream.h>
Void main ()

Char *ptr[3];
Ptr[0]="ravic”;
Ptr[1]= “raju”;
Ptr[2]= “arul”;
Cout<<"contents of pointer 1\t"<<ptr[0]<<end];
Cout<<"contents of pointer 1\t"<<ptr[1]<<end];
Cout<<"contents of pointer 1\t"<<ptr[2]<<end];
}
Output:
contents of pointer 1 ravic
contents of pointer 2 raju
contents of pointer 1 arul

POINTERS TO POINTERS

An array of pointers is the same as pointers totpas. As n array of pointers is easy to
index because the indices themselves convey thaningeaf a class of pointers. However,

69

pointers to pointers van be confusing. The poirtera pointer is a form of multiple of
indirections or a class of pointers. In the casa pbinter to a pointer, the first pointer contain
the address of the second pointer, which pointhdovariable that contain the values desired.
Multiple indirection can be carried on to whatewsttent desired, but there are a few cases
where more pointer o a pointer is heeded

Pointer Variable

A 4

Pointer .| Pointer | Variable

A
A

A variable that is a pointer to a pointer must kelared as such. This is done by placing
an additional * in front of the variable name. Tdexlaration informs the compiler that the next

int **ptr2;
Where ptr2 is a pointer which holds the addresh®fanother pointer.
Program: A program to declare the pointer to pain&riable and to display the contents

of these pointers.
#include<iostream.h>
Void main ()
{
Int value= 100;
Int *ptrl, **ptr2;
Ptrl=&value;
Ptr2=&ptrl,
Cout<<"Pointer 1 value"<<*ptrl<<endl;
Cout<<"Pointer 2 value”<<*ptr2<<endl;
}
Output:
Pointer 1 value 100
Pointer 2 value 100

STRUCTURES

A collection of heterogeneous data types can bapgw to form a structure. The entire
collection can be referred to by a structure natte.individual component which are called
fields or members can be accessed and processedatedy. There are two important
distinctions between arrays and structures. Onallighe elements of an array have the same
type, whereas in a structure the components alsfiehn have different data types.

Another distinction is that a component of an aigageferred to by its position, whereas
each component of a structure has a unique namplyssay that it is an user defined data type.

Name

70

Member 1

Member 2
Member 3
Member n
General Syntax:
[storage_ clagsstruct user_ defined_ name
{
Data_ type memberl;
Data_ type member2;
Data_type memberN;
}[s1, s2, .., sN

Where storage _ class refers to the scope of thg aariable such as external, static or
an automatic. It is an optional one

Struct is a keyword

Data_ type is used to allocate the type of the nmgrtiot, float, char, etc)
Memberl, member2, .., memberN are member of thetstie.

S1, s2, ..., sN are structure variables.

Assigning values to members of the structure
Structure_ variable.memberl=value;
Structure_ variable.member2=value;

Structure_ variable.member3=value;
Programl: A program to assign some values to the memberstiuature and to display the
structure members’ values.
Struct data{
Int day;

Int month;
Int year;

71

}s1;

Si.day=25;

S1.month=9;

Sl.year-76;

Void main ()

{
Cout<<sl.day<<endl;
Cout<<sl.month<<end!;
Cout<<sl.year<<endl;

}

Output:

25

9

76

INTIALIZATION OF STRUCTURE

A structure must be initialized whenever it museliber static or external.
General Syntax:
[storage clagstruct user_ defined name
{
Data_type memberl;
Data-type member2;

Data_type memberN;
}sl={memberl Value, member2value,...,memberN Value};

Example:
Struct student
{
Int rollno;
Float avg;
}s1={21, 98.2};
Program: A program to initialize the members of aisture and to display the contents of

the structure on the screen.
#include<iostream.h>
Struct student
{
Int rollno;
Float mark;
}s1={100,54};
Void main ()
{
Cout<<"Roll Number\t"<<sl.rollno<<endl;
Cout<<"Mark\t’<<sl.mark<<endl;

72

}
Output:

Roll Number 100
Mark 54
Note: A field or member of a structure is a unique ndanghe particular structure. The same
field or member name may be given to o#ftierctures with different data types.
Example:
Struct first
{
Int a;
Float b;
%
Struct second
{
Int a;
Float b;
}
In the above two structures namely first and sedung three members and all the two
are of different data types but have same names

FUNéTIONSAND STRUCTES

A function is a very powerful techniqgue to decongascomplex problem into separate
manageable parts or modules. Each part is calfadaion and is very much used to convert a
complicated modules. Each part is called a functma is very much used to convert a
complicated program into a very simple one. As fioms can be compiled separately, they can
be tested individually and finally invoked in tareain program as a whole.

A structure can be passed to a function as a swvaleble. the scope of a structure
declaration should be an external storage classeuas a function in the main program is using
a structure data types. The field or member davaldhbe same throughout the program either
in the main or in a function.

Example:

Struct student

{
Int rollno;
Float mark;

h

Void main ()

{
Void display (struct student s);
Struct student s1;

73

}
Void display (struct student s)

Program: A program to display the contents of a structwgiag function definition.
#include <iostream.h>
Struct student

{
Int rollno;
Float mark;
%
Void main ()
{
Void display (struct student s);
Struct student s1={1000, 54 44}
Display (s1);
}
Void display (struct student s)
{
Cout<<"Roll Number \t"<<s.rollno<<endl;
Cout<<”"Mark \t “<<s.mark<<endl;
}
Output:
Roll Number 1000
Mark 54. 44
ARRAYSOF STRUCTURES

An array is a group of identical data which aregexian consecutive memory locations in
a common heading or a variable. a similar typetafcture placed in a common heading or a
common variable name is called arrays of structures

Example:
Struct student
{
Int rolino;
Float avg;
1s1[3];

A three user defined type contiguous memory locatioe allotted for the structure
variable. s1. each record may be accessed andspeatseparately like individual elements of
an array.

This is

74

S1 [0].rollno=value;
S1[0].avg=value;

Initialization of arrays of structures

A structure can be initialized in the same wayheg bf array data when a structure must
be declared as either static or external.
Struct student

{
Int rolino;
Float avg;
¥1s1[3]={
{10001, 89.2},
{10002, 93.1}
{10003, 8.2 }
¢
Program: A program to read and display some membileas array of structures and to

display the contents of h# structures.
#include<iostream.h>
Struct student

{
Int rollno;
Float mark;
}
Void main ()
{
Inti;
Struct student s[3];
For(i=0;i<3;i++)
{
Cout<<"\n Enter the roll no”;
Cin>>gJi].rollno;
Cout<<™\nEnter the mark”;
Cin>>gJi].mark;
}
Cout<<"\nThe Student details ...\n";
For(i=0;i<3;i++)
{
Cout<<sg]i].rollno<<"\t"<<s][i].mark<<endl
}
}
Output:

Enter the roll no 1001
Enter the mark 45

75

Enter the roll no 1002
Enter the mark 23
Enter the roll no 1003
Enter the mark 56
The Student details ...

1001 45
1002 23
1003 56

ARRAYSWITHIN A STRUCTURE

So far, the discussion has been limited to membéra structure which have been
declared as an ordinary data type such as chaflaat only. However, a member of a structure
can be an array data type also.

General Syntax:
[Storage_ cla$sstruct user _defined_ name
{
Data_type memberl;
Data_ type member2 [size]; //data member contairareay of elements

Data_ type memberN;

}

Example:
Struct student
{

Int rollno;

Float mark [3]; /It is used to store 3 marks atadent

3
Program: A program to declare the array data type withgtracture and to initialize some of

the structures and to displaydbetent of the structures.
#include <iostream.h>

Struct student

{
Int rollno;
Char name [20];
Float marks [3];
3
Void main ()
{

Inti;

Struct student s;
Cout<<™\n Enter the roll no”;
Cin>>s.rollno;
Cout<<"\nEnter the name”;

76

Output

STRUCTURESWITHIN A STRUCTURE (NESTED STRUCTRE)

Cin>>s. name;
Cout<<™\nEnter the marks”;
For (i=0;i<3;i++)

{

Cin>>s. marksJi];

}

Cout<<\n The Student details ...\n";

Cout<<s.rollno<<"\t<<s. name<<end!;
For (i=0;i<3;i++)
{

Cout<<"Mark” <<i+1<<":"<<s. marks [i]<<end];

}

Enter the roll no 10001
Enter the name jthasvi
Enter the marks 67 78 89
The Student detalls ...
10001 jthasvi

Mark 1:67

Mark 2:78

Mark 3:89

A structure use a member of another structure. Wdestructure is declared as the
member of another structure, it is called as aauestructure or structure within a structure. The
individual elements in a nested structure firsrespnt the structure variable name and the first
structure and then the filed name of the firstcttrce.

To assign values

Structure_ var_ name. structure _ var_ name. faattir value

General Syntax:

Struct one

Struct second

{

Struct one o;

77

¢
Program: A program to read and display a set of mlihate of birth of a student where the
date of birth consists ofetamembers such as day, month and year, as ateepara
structure.
#include<iostream.h>

Struct date
{
Int day;
Int mouth;
Int year;
8
Struct student
{
Int rollno;
Struct date d;
8
Void main ()
{ |
Inti;
Struct student s;
Cout<<"\n Enter the roll no”;
Cin>>s. rollno;
Cout<<"\nEnter the Date of Birth”;
Cin>>s. day>>s. d. month>> s. d. year;
Cout<<"\n Detalls ...\n";
Cout<<s. rollno<<endl!;
Cout<<”Date of Birth: “<<s. d. day<<"-“<<s. d. mdnt<"-“<<s. d. year,
}
Output:
Enter the Roll no 10001
Enter the Date of Birth 10 10 1976
Detalls ...
10001
Date of Birth: 10- 10- 1976

POINTERS AND STRUCTURES

A pointer is a variable which hold the memory addref a variable of basic data type
such as int, float or sometimes an array. A poiotar be used to hold the address of a structure
variable too. The pointer variable is very muchdue construct complex data bases using the
data structures such as linked lists, double lidlstsl and binary trees.

General Syntax:

[Storage_ clagsstruct user _defined_name

78

{

Data_type memberl;
Data_ type member2;

Data_ type memberN;
hrptrd;

Where ptrl is a pointer variable holding the adslr&fsthe structure and is its having

some members.

The pointer structure variable can be accessedarmkssed in one of the following

ways:

(*struct_ name).field_ name=variable;

The parenthesis are essential because the strutemger period () has a higher
precedence over the indirection operator (*). Tlenfer to structure can also be expressed
using dash (-) followed by the greater than sign (>

General syntax:
Structure_ name-> field_ name=variable;
Examplel:
Struct student
{
Int rollno;
Int mark;
yst;

*(st).rolino=10001;
*(st).mark=87;
Example 2:
#include<iostream.h>
Void main ()

{

Struct student
{
Int rollno;
Int mark;
3
Struct student *st;
St->rollno=10001;
St->mark=40
Cout<<st->rollno;
Cout<<st->mark;

}
10001 40

Output:

79

UNIONS

We know that structure is a heterogeneous data wipeh allows to pack together
different types of data values as a single uniiolins also similar to a structure data type with a
difference in the way the data is stored and ne¢de The union stores values of different types
in a single location.

A union will contain one of the many different tyef values (as long as only one is
stored a time). Union holds only one value for dgfee. If a new assignment is made, the
previous value is automatically erased.

General Syntax:

[Storage_ cla$sstruct user _defined_ name
{

Data_type memberl;

Data_ type member2;

Data_ type memberN;
} [ul, u2 ..., u;
Where storage class refers to the scope of thg aariable such as external, static or an
automatic. It is an optional one

Data_ type is used to allocate the type of the nmgr@imt, float, char, etc)
Union is used to declare the union data type.

Memberl, member2... memberN are members of the union.

Ul, u2, ..., un are Union variables.

Note: A union may be a member of a structure and atstreiecnay be a member of a union
moreover, structures and unions can bednireely with arrays.

Example:
Union student
{
Int rollno;
Float mark;
|3

PROCESSING WITH UNION

A period operator (.) is used in between unionalde name and the field name. once a
union type is defined, variables for the union dgfge can be declared.

#include<iostream.h>
Union student

80

Int ch;
Int chl;
}ul;
Void main ()
{
Ul. ch=12;
Ul. chl=18;
Cout<<"\n Roll Number”"<<ul. ch <<endl;
Cout<<"\n Mark’<<ul. chl <<endl;

Output:
Roll Number 18
Mark 18

Initialization of Unions

Static and external structures can be initializéenvthey are defined, and it may seem
reasonable to allow the same for unions. Howevenian has only cone active member at any
given time and it is up to the programmer to keapht of the active member, as this information
is not inherently stored with the union itself. Wdugh pointers to unions may be used just like
pointers to structures. Unions themselves may eropdissed as a function arguments used in
assignment statements or returned by a functiorarfble may be a pointer to a union first as a
pointer can point to a structure.

Union student

{
Int ch;
Int chl;
Ful;

The members can bereferred by using the pointer operator

U1l->ch;
Ul->chi;

A union can be a member of a structure and it pgear as any member of the structure.
Whenever, a union is declared as a member of atstay it should not be first member, but the
last one.

Program: A program to declare a member of an unisraatructure data type and to
display
the contents of the union.
#include <iostream.h>
Struct datel {
Int dd;
Int mm;

Int yy;
5
81

Struct date2

{
Int dd;
Char mm[5];
Int yy;

|3

Union date

{

Union datel d1;
Union date2 d2;

1d;

Void main ()

{
d.d1.dd=11;
d.d1.mm=10;
d.d1.yy=98;
cout<<”\nDate:"<<d.d1.dd<<"-“<<d.d1.mm<<"-"<<d.dlyyx<endl;
}

Output:

Date: 11-10-98

BIT FIELDS

A bit field is a special type of structure membietholds several bit fields, can packed
into an int. While bit fields are variables, they a@lefined in terms of bits rather than character
or integers. Bit fields are useful for maintainisimgle or multiple bit flags in an int without
having to use logical AND and logical OR operatibtmset and clear them. They can also assist
in combining and dissecting bytes and words thatsant to and received from external devices.

The formal declaration of a bit field is same as dleclaration of a structure, but there is a
difference in accessing and using a bit field istr@cture. The number of bits required by a
variable must be specified and followed by a caldrle declaring a bit field. The bit fields can
be signed or unsigned integers, from 1 to 16 bitength. The number of bits will depend on
the machine being used. The bit field is very usefth data items where only a few bits are
required to indicate a true or condition. Seconthg, bit field is used to save the memory space.
The number of bits required by each variable idaded in a structure.

General Syntax:
[Storage_ clagsstruct user _defined_name

{

Data_type memberl field _ size;
Data_ type member2 field _ size;

Data_ type memberN: field__ size;

82

Where field_ size is number of bits for the datamhers.

Example:
Struct data
{
Int dd:1; //bit field operator
Int mm:2;
Int yy:3;
}d;
5 4 3 2 1 0 Bits
[dd | mm L yy |

The entire structure bits is a single 16 bit watd takes up 1 bit and mm takes up 2 bits
and yy takes up 3 bits. The way of accessing did¢dd in a structure is similar to accessing
another structure field. The period operator (Jsed to access a bit field of a structure.

Program: A program to demonstrate the bit fiefgerator

#include<iostream.h>
Struct date
{
Int dd: 1; //bit field operator
Int mm;
Intyy;
}d;
Void main ()
{
d. dd=10;
d. mm=10;
d. yy=98;
cout<<"\nDate: “<<d. dd <,”-“<<d. mm<<"-“<<d. yy<<dll;

}
Output:

Date: 0-10-98
Note: we can not use scanf or cin to read valuesarbit field. Instead, one has to read into a
temporary variable and then assign its value tdbthéeld. Even the bit fields may be accessed
in structure using a pointer operator indirectipem@tor.

TYPEDEF

The typedef is used to define new data items tleaequivalent to the existing data types.
Once a user defined data is declared, then newablas, arrays, structures, and so on can be
declared in terms of this new data types.

General Syntax:

83

Typedef data_ type new Type
Where typedef is a keyword for declaring the nesmg and data type is an existing
data type being converted to the new name (newjType
Example:
Typedef int integer;
Typedef struct student stu;
Typedef struct student

{

} stud;

Stud;

Program: A program to define the variable using tygfeshd to display the contents of the
variable .

#include<iostream.h>

Void main ()

{

Int rollno;

Typedef int integer;
Integer | =1000;
Cout<<l;
}
Output:
1000

ENUMERATION

An enumeration data type is a set of values reptedeyy identifiers called enumeration
constants. The enumeration constants are speuified the type is defined.

General Syntax:
Enum user_ defined _name
{
Member 1;
Member2;
memberN:;
}

Where enum is a keyword for defining the enumenatiata type and the braces are
essential. The members of the enumeration datastygle as memberl, member2, ..., memberN
are individual elements.

Example:
Enum sample {Sun, Mon, Tue, Wed, Thu, Fri, Sat};
Program: A program to declare the enumeratida tge and to display the integer

#include<iostream.h>

Enum day { Sun, Mon, Tue, Wed, Thu, Fri, Sat};

Void main ()

84

Cout<<”Sunday ="<<Sun<<end];
Cout<<”"Monday ="<<Mon<<endl;
Cout<<"Tuesday ="<<Tue<<endl;
Cout<<"Wednesday ="<<Wed<<endl;
Cout<<"Thursday ="<<Thu<<endl;
Cout<<"Friday ="<<Fri<<endl;
Cout<<"Saturday ="<<Sat<<endl,

}
Output:
Sunday= 0
Monday= 1
Tuesday= 2
Wednesday=3
Thursday= 4
Friday=5
Saturday = 6
Examplel:
Enum day {Sun, Mon, Tue, Wed, Thu, Fri, Sat} d=;Jan
Returns an error message because Jan is not eniome@stant.
Example 2:
Enum day {Sun, Mon, Tue, Wed, Thu, Fri, Sat};
The enumeration constant starts with 100.
Example 3:

Enum day {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

The enumeration constant values becomes

Sunis 0

Monis 1

Tue is 100

Wed is 101

Thu is 102

Friis 103

Satis 104

CLASSAND OBJECTS

A class is a user defined data type which holdé tloé data and functions. The internal
data of a class is calledember data (or data member) and the functions are calledember
functions. The member functions mostly manipulate the irderdata of a class. The member
data of a class should not normally be addresstsideua member function. The variables of a
class are calledbjects orinstance of a class.

85

In ssimply say that a classis a collection of objects of similar type.

Example:
/Imange, apple and orange are members of thefoldiss

Class fruit

%
Fruit mango, apple, orange;
The class construct provides support for data bidikbstraction, Encapsulation, Single
Inheritance, Multiple inheritance, Polymorphism gomablic interface functions (methods)For
passing message between objects.

(a) OBJECT
(b)

Objects are the basic runtime entities in an objeieinted system. They may represent a
person, a place, a bank account, a table of datayitem that the program must handle. The

may also represent user-defined data such as setitoe and lists.

Object: STUDENT STUDENT

Total

DATA
Name
Date-of-birth Average

FUNCTIONS Display
Total
Average
Display

(b) DATA ABSTRACTION, HIDING AND ENCAPSULATION

The wrapping up of data and functions into a singh (called class) as known as
Encapsulation. The data is not accessible to the outside wodday those functions which
are wrapped in the class can access it. Thesaduagtrovide the interface between the object’s
data and the program. This insulation of the ffata access the program is called Data hiding.

Classes use the concept of abstractions and aredefs a list of abstract attributes such
as size, weight and cost and functions to operat¢hese attributes. They ecapsulate all the

86

essential properties of the objects that are torbated. Since the classes use the concept Data
abstraction, they are known as Abstract Data TYped).

(C) INHERITANCE

Inheritance is the process by one class can acthergroperties of objects of another
class. It is supports the concept of hierarchitzdsification.

Example:
The bird robin is a part of the class flying birtiieh is again a part of the class bird.

Bird

Attributes:
Feathers
Lay eggs

i O

Flying Bird
ying Nonflying Bird
Attributes: Attributes:
Robin Swallow Penguin Kiwi
Attributes: Attributes: Attributes:
............. Attributes:

(d) POLYMORPHISM

Polymorphism means the ability to take more thaa famm. For example, an operation
may exhibit different behaviour in different inst&s. The behavior depends upon the types of
data used in the operation.

Polymorphism plays an important role on allowingeats having different internal
structures to share the same external interfaas.ribans that a general class of operations may

87

be accessed in the same manner even though speciiftms associated with each operation
may diff. polymorphism is extensively used in implkenting inheritance.

Shape
Draw ()
A 4
Shape Shape Shape
Draw () Draw () Draw ()

Fig. Polymor phism

() DYNAMIC BINDING

Binding refers to the linking of a procedure callthe code to be executed in response to
the call. Dynamic binding means that the code aatat with a given procedure call is not
known until the time of the call at run-time. Itassociated with polymorphism and inheritance.
A function call associated with a polymorphic refece depends on the dynamic type of that
reference.

(f) MESSAGE COMMUNICATION

An object-oriented program consists of a set oéotgj that communicate with each other
.the process of programming in an object-orientatgliage therefore involves the following
basic steps

1. Creating classes that define objects and theinbeba
2. Creating objects from class definitions.
3. Establishing communication among objects.

Objects communicate with one another by sendingrandiving information much the
same way as people as messages to one anotharoidept of message passing makes it easier
to talk about building systems that directly moadlesimulate their real word counterparts.

A message for an object is a request for executioa procedure, and therefore will
invoke a function (procedure) in the receiving abjinat generates the desired result. Message
passing involves specifying the name of object, aee of the function (message) and the
information to be sent.

Example:
Employee salary (name);

88

Object Messag inforioat

BENEFITS OF OOP

OPP offers several benefits to both the programigdes and the user. Object.
Orientation contributes to the solution of many lpeons associated with the development
quality of software products. The new technologgmpises greater programmer productivity
better quality of software and lesser maintenawsg. c

The principal advantages are

1.

2.

5.
6.
7

8.
9

Through inheritance, we can eliminate redundantecadd extend the use of
existing classes

We can build programs from the standard working uhesl that communicate with
one another, rather than having to start writirgg¢bde from scratch. This leads to
saving of development time and higher productivity.

the principle of data hiding helps the programnweibtild secure programs that
cannot be invaded by code in other parts of thgnara.

It is possible to have multiple instances of aneobjto co-exist without any
interference.

It is possible to map objects in the problem dontaithose objects in the program.
It is easy to partition the work in a project oneas.

the data centered design approach enables us tireapore details of a model in
implementable from.

Object-oriented systems can be easily upgraded $roail to large systems.
Message passing techniques’ for communication kextwebjects makes the
interface descriptions with external systems mucipker.

10. Software complexity can easily managed.

While it is possible to incorporate all these feasuin an object-oriented system, their
importance depends on the type of the project drel greference of the programmer.
Developing a software that is easy to use and miakesd to build.

DECLARATION OF A CLASS

A class is a user defined data type which congi§tdvo sections, a private and a
protected section that holds data and a publiéasetitat holds the interface operations.

89

A class definition is a process of naming a clasd data variables, and methods or
interface operations of the class. In other wottaks definition of a class consists

a) Definition of a class.

b) The internal representation of data structunesstorage.

c) The internal implementation of the interface.

d) The external operations for accessing and métipg the instance of the class.

A class declaration specifies the representatiomlpécts of the class and the set of
operations that can be applied to such objects.

Class members can be one of the following member lists:
= Data
» Functions
= Classes
= Enumerations
= Bitfields
= Friends
= Data type names

Private:

A 4

Data

A

Functions

A

Public: —

Data

A 4
A

Function

A 4

Example 1:
Class item

{
90

Int itemcode;

Float rate;
%
Example:
Class student
{
Int rollno; /IData member declarationvate by default.
Int mark;
Public:
Void getdata();//Prototype declaration.
Void putdata();
3

MEMBER FUNCTIONS

A function declared as member of a class is ca#leda member function. Member
functions are mostly given the attributes of pulidlecause they have to be called outside the
class either in a program or in a function. The menfunctions of a class are designed to
operate upon three data types. It can typicallglassified into three types.

1. Manager function
2. Accessor functions
3. Implementor functions

1. Manager function

Manager functions are used to perform initializateod clean up of the instance of the
class objects. Some of the examples for the marfagetions are constructor and destructor
functions.

2. Accessor function

The accessory member functions are the constrdictations that return information
about an object’s current state. An example for d@oeessor functions is a const member
functions.

3. Implementor functions

These are the functions that make modificatiorthéodata members. These functions are
also called as mutators.

A class contains not only a data member but alsmetion which are called methods, it
must be defined before it is used.

Example:
Class sample

{

Private:

91

Int X;
Inty;

Public:
Void readData ()
{
Cin>>x>>y;
}
Void display ()
{
Cout<<x<<y,
}
¢

The member functions getData () and display () defned quite normally within the
class declaration. The member functions can moraptex as they can have local variable,
parameters, etc.

Defining a member function of a class outside its scope

It is permitted to declare the member function$aitinside the class declaration or
outside the class declaration. A member functioa ofass is defined using the Scope operator

(:2).
General Syntax:

Return_ type class_ name :: member_ functions(ang®, ..., argN)

Note that the type of member function argumentstnesactly match with the types
declared in the class definition of the class_name.

The important point to note is the use of the sagselution operator (:) along with the
class name in the header of the function definitiOmly the scope operator identifies the
functions as a member of a particular class. Witlloig scope operator, the function definition
would create an ordinary function, subject to teeal function rules of access and scope.

Examplel:
Class sample
{
Private
Int Xx;
Inty;
Public:
Void readData ();//Prototype declaration
Void display (); //Prototype declaration
3
Void sample :: readData () //Function definition
{

92

Cin>>x>>y;

}

Void sample :: display () //Function definition
{

Cout<<x<<y;

}

Example2:
Class sample
{
Private
Int Xx;
Inty;
Public:
Void readData ();//Prototype declaration
Void display (); //Prototype declaration
3
Void sample :: readData () /Function definition
{
Cin>>x>>y;
}
Void sample :: display () //Function definition
{
Cout<<x<<y;
}
Class sample 1
{
Private:
Int j;
Public: readData()
{
Cin>>j;
}
}

In the above example both classes are defined twéhsame member function names
while accessing these member functions are valid.

DEFINING THE ONJECT OF A CLASS

Objects and classes have been loosely througheuprdceding section. In general, a
class is a user defined data type, while an obgen instance of a class template. A class
provides a template, which defines the member fanstand variables that are required for
objects of the class type. A class must be defpraxt to the class declaration.

93

General Syntax:
Class user_ defined_ name
{
Private:
Data members;
Member functions;
Public:
Data members;
Member functions;
Protected:
Data members;
Member functions;
|5
User_ defined_ name objl, obj2, ..., objN;
Where obj1, obj2, ..., objN are the identical clabthe user_ defined_ name

Accessing a member of a class

There are two ways one can access a member ofasihailar to accessing member of a
struct or union construct. A data or function memiilea class construct is accessed using the
period (.) operator.

General Syntax:
Object. Data member;
Object. Function_ member;

Program: A program to assign data to the daéanfvers of a class and display its
contents.
#include<iostream.h>
Class sample

{
Public:
Int X; /Ipublic members are accessed dirdut the objects
Inty;
3
Void main ()
{
Sample s;
Cout<<”Enter x and y values “<<endl;
Cin>>s.x>>x.y;
Cout<<"x value is"<<s.x<<"y value is “<<endl<<s.y;
3
Output:
Enter x and y values
10
56
X value is 10

94

Y value is 56
Program: A program to assign data to the data membéms class using the function
readData () and display its contents using thetfandisplay ().

#include<iostream.h>

Class sample

{

Private:

Int X;

Inty;

Public:

Void readData()

Cout<<”Enter x and y values”<<end|I;
Cin>>x>>y;

}

Void display ()

{

Cout<<"X'<<x<<"y value is"<<endl<<y;

}
i
Void main ()
{
Sample s;
s. readData ();
s. display ();
}
Output:
Enter x and y values
10
56
X value is 10
Y value is 56
Program: A program to assign data to the data mesntiea class using the function
readData () and display its contents using thetfonalisplay (). Define the
function outside its cléssope).
#include<iostream.h>

Class sample

{
Private:
Int X;
Inty;
Public:

Void readData();
Void display ();
95

¢
Void sample :: readData () //Function defined adéghe class sample.

{

Cout<<”Enter x and y values”<<endl;
Cin>>x>>y;

}

Void sample:: display ()

{

}
Void main ()

{

Cout<<"x value is"<<x<< endI<<"y value is"<<endl<gy

Sample s;
S. readData ();
S. display ();

}

Output:
Enter x and y values
X value is 56
Y value is
78

Program: A program to perform simple complex nunsb&ddition and multiplication
using an OOP technique.
#include<iostream.h>
Class sample

{
Private:
Int rp;
Int ip;
Public:
Void readData ();
Void display ();
Void add (sample s1, sample s2);
Void sub (sample s1, sample s2);
Void mul (sample s1, sample s2);
Void div (sample s1, sample s2);
%
Void sample :: readData ()
{
Cout<<”Enter real and imaginary part values”"<<endl;
Cin>>rp>>ip;
}

Void sample :: display ()
96

{

Cout<<rp<<"+"<<"|"'<<endl;

}
Void sample ::add (sample s1, sample s2)
{
Cout<<sl.rp+s2.rp<<’+"<<sl.ip+s2<<"I"<<end|;
}
Void sample ::sub(sample s1, sample s2)
{
Cout<<sl.rp-s2.rp<<’-"<<sl.ip-s2.ip<<"I"<<endl;
}
Void sample :: mul (sample s1, sample s2)
{
Int creal, simag;
Creal=(s1.rp*s2.rp)-(sl-ip*s2.ip);
Cimag=(sl.rp*s2.ip)+(sl.ip*s2.rp);
Cout<<creal<<’+<<cimag<<"I"<<endl;
}
Void sample :: div(sample s1,sample s2)
{
Int temp,creal, cimag;
Temp=(sl.rp*s2.rp)+(s2.ip*s2.ip);
Creal=((s1.rp*s2.rp)+(sl.ip*s2.rp))/temp;
Cimag=((s1rp*s2.ip)-(sl.ip*s2.rp))/temp;
Cout<,creal<<’+"’<<cimag<<"l"<<endl;
}
Void main ()
{
Sample s1, s2, s;
Cout<<First Complex Number’<<endl;
S1. readData ();
Cout<<”"Second Complex Number’<<endl;
S2. readData ();
Cout<<"First Complex Number is”;
S1. display ();
Cout<,”Second Complex Number is”;
S2. display ();
Cout<<"Addition value becomes “<<endl;
s. add (s1, s2);
cout<<”Subtraction value becomes’<,endl;
S. sub(sl,s2);
cout<<”Multiplication value becomes’<,endl;
s. mul(sl, s2);
cout<<”Division value becomes”<,endl;
s.div(sl,s2);
}

97

Output:
First Complex Number
Enter real and imaginary part values
5.5
Second Complex Number
Enter real and imaginary part values
21
First Complex Number is 5+5i
Second Complex Number is 2+1i
Addition value becomes
7+6i
Subtraction value becomes
3+4i
Multiplication value becomes
5+15i
Division value becomes
1+0i

ARRAY OF CLASSOBJECTS

An array is a use defined data type whose membdrommogeneous and stored in
contigous memory locations. For practical applmadi such as designing a large size of
database, arrays are very essential.

General Syntax:
Classuser_ defined_ name
{ |
Private:
Data members;
Member functions;
Public:
Data members;
Member functions;
Protected:
Data members;
Member functions;
h
Class user_ defined_ name object[size];
Where size is a user defined size of the arrayasisoobjects.
Example:

Class sample
{

Private:

98

Int X;

Inty;

Public:

Void readData()

{

Cin>>x>>y;
}
Void display ()
{

Cout<<x<<y;
}
2

Sample s[100];
Where s is an object of the class without tag nasmese size is 100.

POINTER AND CLASSES

A pointer is a variable which holds the memory addrof a variable of basic data type
such as int, float or sometimes an array. A poign be used hold the address of a class
variable too. The pointer variable is very muchdus® construct complex data base using the
data structures such as linked lists, double liflstsl and binary trees.

General Syntax:

[Storage_ clagsstruct user _defined_ name
{

Data_type memberl;

Data_ type member2;

Data_ type memberN;
hptrl;

Where ptrl is a pointer variable holding the adslafsthe class object and is its having
some members.

The pointer structure variable can be accessedpantessed in one of the following
ways:
(*class_ name).field_ name=variable;

The parentheses are essential because the strmotunder period (.) has a higher

precedence over the indirection operator (*). Tlénfer to structure can also be expressed
using dash (-) followed by the greater than sign (>

General syntax:
Class_ name-> field name=variable;
Examplel:

99

Class student
{
Int rollno;
Int mark;
Fst;

*(st).rolino=10001;
*(st).mark=87;
Example 2:
#include<iostream.h>
Void main ()

{

Struct student
{
Int rollno;
Int mark;
3
Struct student *st;
St->rollno=10001;
St->mark=40
Cout<<st->rollno;
Cout<<st->mark;

}
10001 40

Output:

UNIONS AND CLASSES

A union has been defined as a user defined dawawymse size is sufficient to contain
one of its members. At most, one of the membersbeastored in a union at any time. A union
is also used for declaring classed. The membeaisuoion are public by default.

A union allows to store its members only one atn@et A union may have member
functions including constructors and destructows,rot virtual functions. A union may not have
base class. An object of a class with a construmt@ destructor or a user defined assignment
operator cannot be a member of a union. A uniorheae no static data member.

General Syntax:

Union user__ defined_ name
{
Private:
Data members;
Member functions;
Public:
Data members;

100

Member functions;
Protected:
Data members;
Member functions;
|3
User_defined_name objl, obj2, ..., objN;
Where objl, obj2, ..., objN are the union variables.

#include<iostream.h>
Class sample

{

Private:

Int X;

Inty;
Public:

Void readData()
{

Cout<<”Enter x and y values”<<endlI;
Cin>>x>>y;

}

Void display ()

{

Cout<<”"x value is"<<x<<"y value is"<<endI<<y;

}
i
Void main ()
{
Sample s;
S. readData ();
S. display ();

Output:
Enter x and y values
10
56
X value is 10
Y value is 56

CLASSESWITHIN CLASSES (NESTED CLASSES)

C++ permits declaration of a class within anotHass. A class declared as a member of
another class is called as a nested class or a wiftsin another class. The name of a nested
class is local to the enclosing class. The neskdkain the scope of its enoclosing class.

General Syntax:

101

Class outer_ class

{
Private:
Members;
Public:
Members;
Class inner_ class
{
Private:
Data Members;
Member function;
Public:
Data Members;
Member function;
Protected:
Data Members;
Member functions;
H/IEnd of Inner class
Protected:
Members

}//End of outer Class
Outer_ class objectl;
Outer_ class:: inner_ class object2;
Note: Simply declaring a class nested in another doesneain that the enclosing class contains
an object of the enclosed class. Nesting expressgsng, not containment of such objects.
Program: A program to demonstrate the nested ctasse

#include<iostream.h>
Class student
-
Private:
Int roll;
Int mark;
Public:
Class dob

{
Public:
Int dd;
Int mm;

Int yy;
Void readDOB ()

{
Cout<<”Enter the Date of Birth \n”;

Cin>>dd>>mm>>yy;
}
Void displayDOB()
102

{
Cout<<"Marks \t";

Cout<<dd<<’-“<<mm<<-“<<yy;

}
|5
Void readStudent ()
{
Cout<<"Enter the roll number and mark;
}
Void displayStudent()
{

Cout<<”Student Details™;
Cout<<rollno<<"\"<<mark<<"\t":

}
8
Void main ()
{
Student st;
St. readStudent ();
Student::dob d;
d. readDob();
st.displayStudent ();
d. displayDob();
}
Output:
Enter the roll number and mark
10001
98
Enter the Date of Birth
10
10
98
Student Details 10001 98 Marks 10- 10- 98

CONSTRUCTORS

A constructor is a special member function for adtc initialization of an object.
Whenever an object is created, the special memlbeetion, i. e. , the constructor will be
executed automatically. A constructor function ifedent from all other nonstatic member
functions in a class because it is used to intalihe variables of whatever instance being
created. Note that a constructor function can berloaded to accommodate many different
forms of initialization.

Rules for writing constructor functions
= A class name and the constructor name must bathe.s

103

= |tis declared with no return type even void also

= |t cannot be declared const or volatile but a qoiesdr can be invoked a canst and
volatile objects.

= |t may not be static

= |t may not be virtual

= |t should have public or protected access withie tlass and only in rare
circumstances it should be declared private.

General Syntax:
Classuser_ name

{

Private:
Protected:

Public:
User_ name (); //Constructor

h

Example:
#include<iostream.h>
Class test
&
Private:
Int 1, j;
Public:
Test ()

Void display ()
{

Cout<<”| value “<<i<<endl;
Cout<<”j value’<<j<<endl;

}
3
Void main ()

{
104

Test t;
t. display ();
}

| value O
Jvalue 10
A constructor is automatically invoked when an objgegins to live.

Output:

TYPES OF CONSTRUCTOR

1. Default constructors
2. Copy constructors

1. Default constructors

A constructor without argument is callBdfault constructor and with arguments called.
Parameterize constructor.

General Syntax:
Classuser_ name
{
Private:
Protected:
Public:
User_ name (); //Constructor
User_name (data_ type argl, ..., data_ type argRBrdmeterized
constructor
%
User_name :: user _name ()
{
}

Example:

#include<iostream.h>
Class test

{

Private:

105

Int1, j;
Public:
Test ()

Test(int al)
{

Variable

}
Test(int al, int a2)

{

I=al; //ll j could not initialized so, it returtise address of the

I=al;
J=az;
}
Void display ()
{
Cout<<”| value “<<i<<endl;
Cout<<”j value”<<j<<endl;

}
¢
Void main ()
{
Test t;
Cout<<"output of default constructor’<,endl;
t. display ();
test t1 (100);
cot<<”output of parameterized constructor with tgmaeter’<<endl;
t1. display ();
test t2(54, 67);
cout<<”output of parameterized constructor witha2gmeters’<<endl;
t2. display ();

Output

Output of default constructor
| value O
Jvalue 10

Output of parameterized constructor with 1 paramete
| value 100
J value 1164

Output of parameterized constructor with 2 pararsete
| value 54
J value 67

106

2. Copy constructor

Copy constructors are always used when the conipalerto create a temporary object of
a class object. The copy constructors are usdtkifollowing situations:
» The initialization of an object by another objettle same class.
» Return of objects as function value
= Stating the object as by value parameters of atifumc
General Syntax:

Class_ name:: class_ name(class_ name &ptr)
where class_ name is the user defined class name.
The copy constructor may be used in the followimgrfat also using a const keyword.
Class_ name:: class_ name(const class_ name &ptr)
where class_ name is the user defined class name.
program: A program to generate a series of Fibormawmbers using a copy constructor
where the copy construadadefined with the class declaration itself.
#include<iostream.h>

Class fib
{
Private:
Unsigned long int fO, f1, fib;
Public:
Fib ()
{
FO=0;
F1=1;
Fib=fO+f1;
}
Fib:: fib(fib &ptr)
{
FO=ptr. fO;
F1l=ptr. f1;
Fib=ptr. fib;
}
Void increment ()
{
FO=f1;
F1=fib;
Fib=f0+f1;
}

Void display ()
{

Cout<<fib<<"\t";

}
%
Void main ()

107

Fib f;
For(int i=0;i<=10;++i)
{
f. display ();
f. increment ();
}
}
DESTRUCTORS

A destructor is a function that automatically exesuwhen an object is destroyed. A
destructor function gets executed whenever annaostaf the class to which it belongs out of

existence. A primary usage of the destructor fmctis to release space on the heap. A
destructor function may be invoked explicitly.

Rules for writing a destructor function
= A destructor function name is the same as thahefctass it belongs except that the
first character of the name must be a tilde (~).
= |t is declared with no return types since it canmadr return a value.
= |t cannot be declared static, const or volatile.
= |t takes no arguments and therefore cannot be aaczh.
= |t should have public access in the class dectarati

General Syntax:
Classuser_ name
{ _
Private:
Protected:
Public:
User_ name (); //Constructor
User_name (data_ type argl, ..., data_ type arg®grdmeterized
Constructor
~user_ name(); //Destructor
%
~User_name :: user _name ()
{

108

#include<iostream.h>
Class test
{
Private:
Intl;
Public:
Test ()
{
I=100;
Cout<<"\nConstructor called automatically “<<endl;

}
~Test(int al)

{

}
h
Void main ()

{
}

Constructor called automatically
Destructor called automatically

Cout<<"\nConstructor called automatically “<<endl;

Test t;

Output:

INLINE MEMBER FUNCTIONS

The inline specifier is a hint to the compiler tirdine substitution of the function body is
to be preferred to the usual function call impletagan.
The advantages of using inline member functions are

* The size of the object code is considerably reduced
* Itincreases the execution speed
* The inline member functions are compact functidisca

General Syntax:
Classuser_ name
{ |
Private:
Public:

109

Inline return__ type function_ name(parameters);
Inline return__ type function_ name(parameters);

}

The keyword inline is used as a function specibiglly in function declarations. It can be
used either as a member of a class or a globatiumd o define inline member specifier is well
suited whenever a function is small, straight faxvand are not called from too many different
places.

Example:

#include<iostream.h>

Class sample

{

Private:
Int X;
Inty;
Public:
Inline void readData()
{
Cout<<”Enter x and y values”<<endlI;
Cin>>x>>y;
}
Inline void display ()

{
Cout<<"x value is"<<x<<endl<<"y value is"<<endI<<y;
}
¢
Void main ()
{
Sample s;
s. readData ();
s. display ();
}
Output:
Enter x and y values
X value is 10
Y value is 20

STATIC CLASSMEMBERS

Static variables are automatically initialized #r@ unless it has been initialized by some
other value explicitly. Static members of a claga be categorized into two typesatic data
member andstatic member function.

110

Whenever a data or function member is declaredststie type, it belongs to a class, not
to the instances or objects of the class. Botlddia member and member function can have the
keyword static.

STATIC DATA MEMBER

Static data member are data objects that are comionah the objects of a class. They
exist only once in all objects of this class. Tlaeg already created before the finite object of the
respective class. The static member are used iatoymthat is commonly accessible. Static
member can be of any one of the groups: publizapgiand protected, but not global data. The
a class is public, it can be used as a normal viaria

A static data member of a class has the followirggperties

1. The access rule of the data member of a classrie far the static data member also.
If a static member is declared as a private cajegbra class, then non member
functions cannot access these members. If a stetiober is declared as public then
any member of the class can access.

2. Whenever a static data member is declared andsibhly a single copy, it will be
shared by all the instance of class. That is, tagicsmember becomes global
instances of the class.

3. the static data member should be created andlim#tthbefore the main () function
control block begins.

General Syntax:
Classuser_ defined_ name
{
Private:
Static data_ type variables;
Static data_ type variables;
Public:
}

Examplel:
#include<iostream.h>
Class sample
{
Private:
Static int x;
Public:
Void display ()

{

111

Cout<<”x value is “<<s<<endl;

}
%
Int sample:: x;
Void main ()
{
Sample s;
s. display ();
}
Output:
Xvalueis 0
Examjple2:
#include<iostream.h>
Class sample
{
Private:
Static int x;
Public:
Void display ()
{
Cout<<”x value is “<<x++<<endl;
}
h
Int sample:: x;
Void main ()
{
Sample s, s1;
s. display ();
sl. display(); // currently x value is 1 becausdistvariables are globally
/laccessed
}
Output:
Xvalue is 0
Xvalueis 1

STATIC MEMBER FUNCTIONS

The static function is a member function of classl #he static member function can
manipulate only on static data member of the cléks. static member function acts as global
for members of its class without affecting the &fsthe program. The purpose of static member
is to reduce the need for global variables by mhog alternatives that are local to a class. A
static member function is not part of objects assl Static members of a global class have
external linkage. A static member function doeshmate a this pointer so it can access nonstatic
members of its class only by using. Or->.

112

The static member function cannot be a virtual fimmc A static or nonstatic member
function cannot have the same name and the samenangs type. And further, it cannot be
declared with the keyword const. the static menfilmection instance dependent, it can be called
directly by using the class name and the scopduteso operator. If it is declared an defined in
a class, the keyword static should be used onlyemtaration part.

General Syntax:
Classuser_ defined_ name
{
Private:
Public:
Static data_ type function_ name (arguments);
}
Example:

#include<iostream.h>
Class sample
{
Private:
Static int x;
Public:
Sample ()

{

}
Static void display ()

{

Cout<<"x value is “<<x<,endl;
Int sample ::x;

Void main ()

{

Sample:: display ();

Sample s, sl

Sample ::display ();//Static member functions areeased without creating objects

}

Xvalueis 0
X value is 2

X++;

Output:

FRIEND FUNCTIONS

113

The main concepts of the object oriented programgmeradigm are data hiding and data
encapsulation. Whenever data variable are declarea private category of a class, these
members are restricted from accessing by non-mefabetions: The private data values can be
neither read nor written by non member functions.sblve this problem, a friend function can
be declared to have access to these data memhbersd s a special mechanism for letting non-
member functions access private data. A friend tfancmay be either declared or defined
within the scope of a class definition. The keywdnidnd informs the compiler that is not a
member function of the class.

A friend declaration is valid only within or outgidhe class definition
General Syntax:
. Classuser__ defined_ name

{
Private:
Public:
Friend return_ type function_ name (parameters);
J§

Example:
#include<iostream.h>
Class sample

{
Private:
Int x;
Public:
Sample ()
{

X=100;
Friend void display (sample s);
3

Void display (sample s)//Non member function of thess sample
{
Cout<<”x value is “<<s. x<<endl;
}

Void main ()

{

Sample s;

Display (s);

}

Output:
X value is 100
Example:

114

#include<iostream.h>
Class sample

{
Private:
Int Xx;
Public:
Sample ()
{

X=100;
}
Friend void display (sample s);
%

Void display (sample s)//Non member function of theess sample
{
Cout<<"x value is “<<s. x<<endl;
}

Void main ()

{

Sample s;

Display (s);

}

Output:
X value is 100
(@) Accessing private data by non-manflsection through friend. The private data

members are available only togh#icular class and not to any other part of the
program. A non-member functionmet access these private data.
Each time a friend function accesses the privata, daturally the level of privacy of the data
encapsulation gets reduced. Only if it iIs necessargccess the private data by non-member
functions, then a class may have a friend functdnerwise it is not necessary.
Example: Above example

(b) friend function with inline substitution
Friend function may also have inline member funwiolf the friend function is
defined with the scope of the class definitionnthiee inline code substitution is
automatically made. If it is defined outside thasd definition, then it is required
to precede the return type with the keyword inimerder to make a inline code
substitution.

Example:

#include<iostream.h>
Class sample

{

Private:
Int x;
115

Public:

Sample ()
X=100;
}
Friend void display (sample s);
h
Inline void display (sample s)//Non member functafrthe class sample
{
Cout<<"x value is “<<s. x<<end!;
}
/lint sample :: x;
Void main ()
{
Sample s;
Display (s);
}
Output:
X value is 100
(c) Granting friendship to another class. A claaa have friendship with another
class.
Example:

#include<iostream.h>
Class sample
{
Friend class second;
Private:
Int X;
Public:
first ()

{
}

X=100;

h
Class second

{
Public:

Inline void display (sample s)//Non member functafrthe class sample

{

Cout<<"x value is “<<s. x<<endl;

}

Void main ()

{
116

First f;
Second s;
S. display(f);
}

X value is 100
(d) Two classes having the same friend.

Output:

General Syntax:
Class class1

{

Private:

Public:
Friend return_ type function_ name(parameters);
%

Class class2

{

Private:

Public:
Friend return_ type function_ name(parameters);
i

Return_ type function_ name(parameters)

{

Example:

#include<iostream.h>
Class second; //forward declaration
Class first
{ |

Private:

Int X;
Public:
first ()

{
}

Friend void sum (first f,second s);

X=100;

117

Class second

{

Private:
Inty;
Public:
Second ()
{
Y= 200;
}

Friend void sum (first f, second s);

Void sum (first f, second s)

{
Cout <<"x value is “<<f. x<<end|;
Cout<<"y value is <<s. y<<endl;
Cout<<"The summation of x and y value is <<"f.XS.
}
Void main ()
{
First f;
Second s;
Sum (f. s);
}
Output:
X value is 100
Y value is 200

The summation of x and y value is 300
DYNAMIC MEMORY ALLOCATIONS

Two operators namely, new and delete are used nardic memory allocations which
are described in detail in this section.
New

The new operator is used to create a heap memacedpr an object of a class. In C,
malloc(), calloc() and alloc() functions are usedcteate a memory space dynamically. C++
provides a new way in which dynamic memory is ated. The new keyword calls upon the
function operator new() to obtain storage.

Basically, an allocation expression must carrytbatfollowing three things:
o Find storage for the object to be created
o Initialize that object
0 Return a suitable pointer type to the object

118

The new operator returns a pointer to the objeeated. Functions cannot be allocated
this way using new operator but pointers to fumibe used for allocating memory space.
General Syntax:

Data_ type pointer= new data_ type;

Where data_ type can be a short, int, float, cuaay or even class objects.
Example:

New int; /lan expression to allocatgingle integer

New float; /lan expression to allocaféoating value

If the call to the new operator is successful,eturns a pointer to the space that is
allocated. Otherwise it returns the address zetweispace could not be found or if some kind of
error is detected.
Delete

The delete operator is used to destroy the varigbpéee which has been created by
using the new operator dynamically. It is analogtushe function free() in C. The keyword
delete calls upon the function operator delete(jetease storage which was created using the
new operator.

General Syntax:
Delete pointer;
Example:
char*ptr_ch=new char; //memory for a charaezllocated
Int*ptr_i=new int; //memory for anteger is allocated
Delete ptr_ch; /ldelete memspace
Delete ptr_i /ldelete

Note: delete operator is used for only releasing thephmamory space which was allocated by
the new operator. if attempts are made to releasaary space using delete operator that
was not allocated by the new operator, then it gimpredictable results. the following
usage of the delete operator is invalid, as thetdalperator should not be used twice to
destroy the same pointer.

Example:
char *ptr_ch=new char; //memory for a charadelocated
delete ptr_ ch; /[delete memspgce
delete ptr_ch; /lerror becaalseady destroy the pointer
program: A program to create a dynamic memorycallon for the standard data types:
integer, floating point, character and double. theinter variables are
initialized with some data and the contents ofgbmters are displayed on the
screen.
#include<iostream.h>
void main()
{

int *ptr_i=new int(25);

float *ptr_i=new(-10.20);

char *ptr_c=new char(‘a’);

double *ptr_d=new double(1234.493);
cout<<”Integer value “<<*ptr_i<<endl;
cout<<"Float value”<<*pyr_f<<endl;

119

cout<<”Character value”<<*ptr_c<<end];
cout<<”’Double value’<<*ptr_d<<endl;
delete ptr_i;

delete ptr_f;

delete ptr_c;

delete ptr_d;

Output:
Integer value 25
Float value- 10.2
Character value a
Double value 1234.493
Array data type when an object is an array dapee ya pointer to its initial element is
returned.
new int;
new int[20];

Both the expressions return a pointer to the first element of the array as
int *;
General Syntax:
data_ type pointer=new data_type[size];
where data type can be a short, int, float, chagyaor even class objects, and size is the
maximum number of elements that are to be accomtedda
Example:
int *ptr_a=new int[20]; //an expression to allocaememory space for 20
integers using new operator;
char *ptr_ch=new char[100]; //an expression to eaemory space for 100
characters using new operator.
use of new operator to allocate memory for a two dimensional array A toe
dimensional array can be declared using the newatpeas
dimensional array can be declared using the newnatpeas
new int [10][20];
which returns
int (*0[20];
General Syntax:
data_type(pointer)[size]=new data_type[size];
Example:
int (*ptr_a)[5]+new int[5][5]; //an expression t@llocate memory space for
5x5 integers using new operator.
int (*ptr_c)[10]+new int [10][10]; //an expressido create memory space for
10 x 10 characters using new operator.
the following section shows how the delete operestarsed to destroy the objects created
by new operator for the array data type. the exwesfor the delete operator is same for both
the one dimensional and multidimensional arrays.

120

General Syntax:
delete[] pointer;
Example:
char *ptr_ch=new char[100];

delete[]ptr_ch;

thisPOINTER

a pointer is a variable which holds the memory adslrof another variable. using the
pointer technique, one can access the data of enw#riables indirectly. the this pointer is a
variable which is used to access the address oflétss itself. Sometimes the this pointer may
have return data items to the caller.

General Syntax:

this -> var=Value; /lassign a value to thaalkae var
x=this ->var /Iretrieve the valusing this pointer

program: A program to display the object’'s address of asclasng this pointer.
#include<iostream.h>
class sample
{
private:
int;
public:
void display()
{

cout<<”Objects address: “<<this<<endl;

}
i
void main ()
{
sample s1, s2, s3;
sl.display();
s2.display();
s3.display();
}
Output:
Objects address: 0x1157fff4
Objects address:0x1157fff2
Objects address:0x1157fff0
Program A program to demonstrate how the this pointer edu® access the member data of a
class.
#include<iostream.h>
class sample

{
121

private:
intl;
public:
sample(int i)

{

}
void display()

{

}
3
void main()

{

this-> i=l; /lassign value usingstpointer

cout<<”Object Value:"<<this->i<<endl;//access valuging this pointer

sample s1(17),s2(123),s3(10);
sl.display();
s2.display();
s3.display();

}

output:

Object Value: 17

Object Value: 123

Object Value:10

INHERITANCE

Inheritance is the processes of creating new dasen an existing class. the existing
class is known as the base class and the newlyedretass is called as a derived class. the
derived class inherits some or all of the traitrrthe base class. it can also add some more
features to class. The base class is unchangdd psocess.

Advantages

0 Reusability of the code

o To increase the reliability of the code and

o To add some enhancements to the base class.

Once the base class is written and debugged, @ neechanged again when there are
circumstances to add or modify the member of the<cl

Defining the derived class

A derived class is defined by specifying its relaship with the base class in addition to
its own details.

General Syntax:
Class derived __ class_ name: visibility mode batass name

122

Members of derived class

}

The colon indicates that the derived _ class_ nandetived from the base class_ name.
The visibility mode is optional and, if present, ynlae either private or public. The default
visibility mode is private. Visibility mode spefs whether the features of the base class are
privately derived or publicly derived.

Example:

Class base: private xyz //private derivation

{

Member of base

W i

Class der: public base //derivation
Member of base
Member of der

§

When a base class id privately inherited by a @erielass, ‘public members’ of the base
class become ‘private members’ of the derived ctass therefore the public members of the
base class can only be accessed by the membeilofisatf the derived class. They are
inaccessible to the objects of the derived clagsnémber, a public member of a class an be
accessed its own objects using the dot (.) operaha result is that no member of the base class
is accessible to the objects of the derived class.

When the base class is publicly inherited, ‘pulbiembers’ of the base class become
‘public members’ of the derived class and therefimey are accessible to the objects of the
derived class. In both cases, the private membersnat inherited and therefore the private
members of a base class will never become the nrsmobés derived class.

In inheritance, some of the base class data elesnagitkt member functions are ‘inherited’
into the derived class. We can add our own datamedhber functions and thus extend the
functionality of the base class. We can add our data and member functions and thus extend
the functionality of the base class. Inheritanceemused to modify and extend the capabilities
of the existing classes, becomes a very powerdllfty incremental program development.

SINGLE INHERITANCE

123

Single inheritance is process of creating new eladsom an existing base class. The
existing class is known as the direct base claddl@newly created class is called as a singley
derived class. Single Inheritance is the abilityaaferived class to inherit the member functions
and variables of the existing base class.

Class A

Class B

Example:
#include<iostream.h>
class base
{

private: int k;
public: int |, j;
void read ()
{
cin>>l;
cin>>j;
cin>>Kk;
}
void display ()
{

}
%
class der: public base

{
public:
void sum ()

{

cout<<”j I"<< [k<end<<I<<”] I"<< j<<endl<<’k "<< k<endl;

cout<<”l and j Summation is “<<i+j+k;
/[1 and j are inherited publicly, k not accessibire
}
3
void main ()
{
der d;
d. read ();
d. display ();
d.sum ();
Output:

124

i: 10

j: 20

k: 30

| and j Summation is 30

TYPES OF BASE CLASSES

Any class can serve as a base class. A derived clag be defined as a base of another
class. A base class can be classified into twostygheect base and indirect base.
Direct base class

A base class is called a direct base if it is nue@d in base list.
Example:

Class base

Indirect base class

A derived class can itself serve as a base cldgeduo access control. When a derived
class is declared as a base of another classgethly derived class inherits the properties of its
base classes including its data members and mefmberons. A class is called as an indirect
base if it is not a direct base, but it's base<ta#one of the classes mentioned in the base list.
Example:

Class base

class der2: public derl

{

125

............ /lindirectly inherited the members of ttlass ‘base’

TYPES OF DEPIVATION

Inheritance is a process of creating a new class fin existing class. while deriving the
new classes, the access control specifier givesdta® control over the data members and
methods of the base classes. A derived class calefbeed with one of the access specifiers:
private, public and protected.

Public Inheritance
o Each public member in the base class is publibenderived class
o Each protected member in the base class is prdtectae derived class
o Each member in the base class remain private ibdke class.

General Syntax:
Classbase

Private I nheritance

o Each public member in the base class is privatkarderived class.
o0 Each protected member in the base class is privalhe derived class.
o Each private member in the base class remainstprindhe bare class and hence it is
visible only in the base class.
General Syntax:

Class base

126

h
Protected I nheritance

o Each public member in the base class is privatkdrderived class.

o Each protected member in the base class is privdle derived class.

o Each private member in the base class remainsterindhe bare class and hence it is
visible only in the base class.

General Syntax:
Class base
{
h
class der:protected base
{
h
Not Inheritable Private < Not Inheritable
Protected
Public
Class D1: public B Class D2: private B
- » Private [¢
Private
- Protected
» Protected
) Public
Public P

Class D2: pulilitt: public D2

Private

A

Protected

A 4

> Public

A

127

Fig. Effect of inheritance on the visibility of members
AMBIGUITY IN SINGLE INHERITANCE

Whenever a data member and member function araatkfvith the same name in both
the base and the derived classes, these namedewmsthout ambiguity. The scop resolution
operator (::) may be used to refer to base memkaicély. This allows access to a name that
has been redefined in the derived class.

Example:

#include<iostream.h>
class base

{
public:

void display ()
{

cout<<"Base class’<<endl;

}
%
class der:public base
{
public:
void display ()
{
cout<<Derived class’<<endl;
}
3
void main()
{
der d;
d. display();
d. base:: display();
}
Output:
Base class

Derived class

ARRAY OF CLASSOBJECTSAND SINGLE INHERITANCE

Once a derived class has been defined, the wagoafsaing a class member of the array
of class objects are same as the ordinary clagstyp

128

General Syntax:

Class base
{
Private:
Publi'c.:
%
class der : public base
{
Private:
PUb“.(.:
3
void main ()
{

der obj[100]; //array of class objects of the ded\class.

}

Program: A program to demonstrate array of class dbjeta derived class

#include<iostream.h>
class student

{
Private:
int rollno;
char name[25];
public:
void readStudent ()
{
cout<<"\nEnter the student details\n”;
cout<<”Enter Roll No”;
cin>>rollno;
cout<,”Enter name”;
cin>>name;
}
void displayStudent ()
{

cout<<rollno<<"\t";
cout<<name<<"\t\t”;

129

|3

class mark : public student

{
private:
int mark;
Public:
void readMark ()
{
cout<<”Enter the mark\n”;
cin>>mark;
}
void display Mark()
{
cout<<mark<,"\t"<<end|;
}
%
void main()
{
mark d[3];
intl;
for(i=0;i<3;i++)
{
d[i].readStudent ();
d[i].readMark ();
}
cout<<”\nStudent details\n”;
cout<<”Roll No.”<,"\t"<<"Name”’<<"\t<<"<,"Mark’<<endl;
for(i=0;<3;i++)
{
d[i].displayStudent ();
d[i]. display Mark ();
}
}
Output:

Enter the student details
Enter Roll No: 1001

Enter name: Radhakrishnan
Enter the mark 90

Enter the Student details
Enter Roll No: 10002

Enter name: jthasvi

Enter the mark 65

Enter the student details
Enter Roll No: 10003

130

Enter name: Subramanian
Enter the mark 87
Student details

Roll No. Name Mark
10001 Radhakrishnan 90
10002 jthasvi 65
10003 Subramanian 87

MULTILEVEL INHERITANCE

A derived class can have an indirect base clasedcMulti level inheritance. When a
derived class is declared as a base of anothes,clas newly derived class inherits the
properties of its base classes including its daebers and member functions. A class is called
as an indirect base if it is not a direct base,itaia base class of one of the classes mentioned
in the base list.

Class A

Class C

Fig. Multi Level Inheritance
MULTIPLE INHERITANCES

Multiple inheritances is the process of creatingeav class from more than one base
classes. Multiple inheritance allows us to comhime features of several existing classes as a
starting point for defining new classes. It is likechild inheriting the physical features of one
parent and the intelligence of another. The syritaxinheritance is similar to that of single
inheritance but the base classes are separatezhimas.

Class A Class B

A 4 A 4

Class C

131

General Syntax:

Class D: visibility Base A, visibility Base B ...

5

Program: A program to demonstrate Multiple Inhega

#include<iostream.h>
Class student

{

Private:
Int rollno;
Char name [25];
Public:
Void readStudent ()
{
cout<<™\nEnter the student details\n”;
cout<<”Enter Roll No”;
Cin>>rollno;
cout<,”Enter name”;
Cin>>name;
}
Void displayStudent ()

{
cout<<rollno<<"\t”;
cout<<name<<"\t\t”;
h
Class mark: public student
{
Private:
Int mark;
Public:
Void read Mark ()
{
cout<<”Enter the mark\n”;
Cin>>mark;
}
Void display Mark ()
{

cout<<mark<,"\t"<<endl;

}

132

h

Class overall: public student, public mark

{

3

Void main ()

{
Overall d;
d. read Student ();
d. read Mark ();
d. displayStudent ();
d.Mark ();

}

Output:
Enter the student details
Enter Roll No: 10001
Enter the Student details
Enter the mark 98
10001 Subramanian 98

Note: Ambiguity in the Multiple Inheritance is very silai to Single Inheritance ambiguity.
HERARCHICAL INHERITANCE
The base class will include all the features thatc@mmon to the subclasses. A subclass

can be constructed by inheriting the propertiethefbase class. A subclass can serve as a base
class for the lower level classes and so on.

Class A

!

A 4 A 4

Class B Class D Class C

l

Class E

HYCRID INHERITANCE

The combination of Multilevel and Multiple inhenitee is called Hybrid inheritance.

Cla]ss A

l 133

Class B Class C

vV V

Class D

CONTAINER CLASSES

When a class is declared and defined as a membanather class, it is known as a
nested class. An object of a class as a memberotiier class called container class.

General Syntax:
Classuser _defined_ namel

M T o

Classuser defined name2

{
user_ defined_ namel udnl; //object of the classl
user_defined_ namel udn2; //object of the class2

3
Program: A program to demonstrate container class
#include<iostream.h>
class classA
{
private: int x;
float y;
public:
void read (int a, float b)
{
X=a;y=b;
}
void display ()
{

134

cout<<"x value’<<x<<"\ty value”"<<y<<"\t";

}
h
class classB

{
private: int z;
public:
void read (int ¢)

{

}
void display ()
{

Z=C,

cout<<”z value’<<z;

}
%
class classC
{
private:
classA a;
classB b;
public:
void call ()
{
a.read (56, 19.4);
b. read (45);
a. display();
b.display();

}
¥
void main ()

{

class Cc;
c. call();

}
Output:

X value 56 y value 19.4 z value 45

MEMBER ACCESS CONTROL

The access mechanism of the individual membersctEdss is based on the use of the
Keywords public and protected

Accessing the public data
* All the member functions of the class

135

« Non member functions of the class
 Member function of a friend class
* Member function of a derived class if it has beerived publicly

Accessing the private data
 Member functions of the class
« Member function of a friend class in which it isctiered

Accessing the protected data
* Member functions of the class
* Member function of a friend class in which it isctied
* Member function of a derived class irrespectivavb&ther the derived class
has been derived privately or publicly

OVERLOADING

Overloading refers to the use of the same thingdftierent purposes. Overloading of
functions and operators can be declared, definddatalfed in a use defined program.

FUNCTION OVERLOADING

Function overloading is a logical method of callisgveral functions with different
arguments and data types that perform basicallytick things by the same name. It is also
called Functional Polymorphism.

The main advantages of using function overloading are

* Eliminating the use of different function names tloe same operation
» Helps to understand, debug and grap easily.
» Easy maintainability of the code
» Better understanding of the relation between tloggam and the outside world.
The compiler classifies the overloaded functiontbyname and the number and type of
arguments in the function declaration. The functitatlaration and definition is essential for
each function with the same function name but different arguments and data types.

General Syntax:
Return_ type function_ name (data_ type argl, dgfae arg2, ..., data_ type argN)

return_ type function_ name (data_ type argl, dafae arg2, ..., data_ type argN)
{

136

where function_ name are same but it containsreifearguments.
Program: A program to demonstrate function overloading.
#include<iostream.h>
float area(float a, float b); //Area of the Recthkng
void main ()
{
cout<<”Area of the Square is “<<area(6.7)<<endl;
cout<<”Area of the Rectangle is"<<area(8,7)<<endl;

float area(float a)

{
}

float area(float a, float b)

{
}

Output:
Area of the Square is 44.889996
Area of the Rectangle is 56

return a*a;

return a*b;

Scoping rulesfor Function Overloading

Overloading is a process of defining the same fanatame to carry out similar type of
activities with various data items or with diffetesarguments. The overloading mechanism is
acceptable only within the same scope of the fonatieclaration. Sometimes, one can declare
the same function name for different scopes ofctasses or with global and local declaration,
but it does not come under the technique of funatieerloading.

Example:
#include<iostream.h>
class first
L

private:
int X;
public:
void display();
|3

class second

{

private:
inty;
137

public:
void display();

boid first:: display()

{ cout<<"Class First"<<endl;
ioid second:: display()

i cout<<"Class Second’<<endl;

void display ()//Non member function

cout<<”"Non Member function"<<endl;

}

void main ()

{
first f;
second s;
f. display();
s. display();
display();

}

Output:

Class First
Class Second
Non Member function

Special Features of Function Overloading

casel:

Function overloading is the process of defining teromore functions with the same
name, which differ only by return type and paramet&ome of the special features of the
function overloading are discussed in this section

The function arguments must beicumaffitly different since the compiler
cannot distinguish which functions to be called whad where.

Example:
#include<iostream.h>
void main ()

{

int funct 1(int);
int funct 1(int &a);
int x;

int functl (int &a)
{

/[Error, both the arguments are same in at&l i

}
The above function arguments are not sufficienifjecent unabling the compiler to
distinguish between these functions, and hencdagis@n error message.

Case 2: When typedef is used for declaring arusefined name forfunctions and
variables, it is not separate type but only a synofor another type.

void main()

{

typedef int integer
int funct 1(int);
int functl(integer);

int X;
functl(x);
}
int functl(int)
{
}
int functl(integer)
{
Il Error, both the arguments are same
}

Case3: Even though the values of enumerated datestgpe integers, they are distinguished
from the standard data type of int. so, whenevenation is declared with a function
argument of int and an enumerated data type, ivald in C++ for function
overloading.

Example:

Void main ()

{

enum day (mon, tue wed);
void functl(int i);
void functl(day);

void funct 1(day d)
139

}
Caseb: The pointer arguments of pointariable and an array type are identical.
void main ()
{
int functl (char*®);
int functl charlj];
int x;
}
int functl(char*a)
{
}
int functl(char a[1] // Error
}
{

OPERATOR OVERLOADING

Operator overloading is the process of defining stemdard operators for one or more
objects. It means that-a special kind of functi@perator overloading can be carried out by
means of either member functions or friend funcion

General Syntax:

return_ type operator operator_ to_ be_ overlogdachmeters);

The keyword operator must be preceded by the ragpe of a function which gives
information to the compiler that overloading of ogter is to be carried out. Only those
operators that are predefined in the C++ compileradlowed to be overloaded.

Example:
Void operator++(); /[Unary €ptor
Void operator+(int x, int y) /[Binary Opagor

Rulesfor overloading operators

1. Only operators are predefined in a C++ compiler ga@d Users cannot create new
operators such as S, @, etc.

2. Users cannot change operator templates. Each op@naC++ comes with its own
template which defines certain aspects of its gseh as whether it is a binary

140

operator or a unary operator and its order of mleee. This template is fixed and
cannot be altered by overloading. During overlogdinthe prefixed
incrementer/decrementer and the postfix incremé&tdgerementer are not
distinguished.
Example:

++operator ()

operator++ ()

there is no difference between writing either praficrementer or postfix incrementer.

3. Overloading an operator never gives a meaning wisigladically different from its
natural meaning.

Example: operator *() may perform addition but the codedmes unreadable.

4. Unary operator is overloaded by means of a membactibn take no explicit
arguments and return no explicit values. When taesy overloaded by means of a
friend function, they take no reference argumeatnaly, the name of the relevant
class.

Example: for Assignment operator overloading.
#include<iostream.h>
class smple
ir .
private:
int x, y;
public:
sample()

0
0;

< X ™
Il

}
sample(int a, int b)
{
X=a;
y=b;
}
void operator =(sample s)
void display ();

3
void sample:: operator = (sample s)
{
X=S.X;
y=s.y;
void sample: display ()
{
cout<<"x value’<<x<<<<end];
cout<<"y value”<<y<<endl,
}

141

void main ()

{
sample s1(10, 20), s2;
cout<<”"Object 1 value’<<end|;
sl. display ();
Ss2=s1;
cout<<”Object 2 value’<<endl;
s2. display ();

Output:
Object 1 value
x value 10
y value 20
Object 2 value
x value 10
y value 20

OVERLOADING OF BINARY OPERATORS

Binary operators overloaded by means of membertifume take one format argument
which is the value to the right of the operatomd@y operators, overloaded by means of friend
functions take two arguments.

Overloading Arithmetic Operators

Arithmetic operators are binary operators, theyumeqtwo operands to perform the
operation. Whenever an arithmetic operator is Usedverloading, the operator overloading
function is invoked with single class objects.

Program: A program to program to perform overloadingaof operator for finding the sum
of the two complex numbers.
#include<iostream.h>
class sample
b
private:
int rp, ip; //Real and Imaginary values
public:
sample ()

{

X
y
}

0;

sample (int a, int b)

{

142

sample operator+(sample);
void display ();
%
sample sample :: operator+(sample s)
{
sample t;
t. rp=x+s.rp;
t.ip=y+s.ip;
return t;
}
void sample:; display ()

{
}

void main ()

{

cout<,s<<"+"<<y<<"|"<<endl;

Sample s1(10,20)s2(30,40), s3;
cout<<"First Number’<<endl;
sl. display ();
cout<<”SecondNumber’<<endl;
s2. display ();
s3=s1+s2;
cout<<Resultant Number’<<endl;
s3. display ();
}

Output:

First Number

10+20i

Second Number

30+40i

Result Number

40+60i

Overloading of Comparison Operators

Comparison and logical operators are binary opesatioat require two objects to be
compared and hence the result will be one of these.

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

143

The return value of the operator function is aregetr. Operator overloading accepts an
object on its right as a parameter and the objecthe left is passed by this pointer.
#include<iostream.h>
class sample
L

private:
Int X;
public:
sample()
{
x=0;
}
sample(int a)

{
}

X=a,

int operator<(sample);
void display();

h
int sample::operator<sample s)
{
if (X<s.X)
return 1;
Else
Return O;
}
void sample: display ()
{
cout<<”x value’<<x<,endl;
void main ()
{
sample s1 (10),s2(30);
cout<<”First Object’<<endl;
sl.display ();
cout<<”Second Object’<<end];
s2.display ();
cout<<The result is “<<(s1<s2);
}
Output:
First Object
s value 10
Second Object
x value 30

144

Theresultis 1

OVERLOADING OF UNARY OPERATORS

Unary operators overloaded by member functions takdormal arguments, whereas
when they are overloaded by friend functions tladeta single argument.
Overloading of incrementer and decrementer

This operator is used to increment or decremenbtiject value by 1. These operators
can be used as either prefix or postfix. In generaérloading of these operators cannot be
distinguished between prefix or postfix operatibtowever, whenever a postfix operation is
overloaded, it takes a single argument along witieanber function of a class object.

Program: A program to demonstrate Unary Operator
#include<iostream.h>
class sample

{
private:
int x;
public:
sample ()
x=0;
}
sample(int a)
X=a,
}
int operator++ ();
void display ();
3
int sample :: operator ++()
{
return X++;
}
void sample :;display ()
{
cout<<”x value”"<<x<<endl;
}
void main ()
{

Sample s(10);
cout<<”Object Value"<<endl;
x. display ();

145

cout<,"Result’<<endl;
cout<<x++;

}

Output:
Object Value
X value 10
Result
10

Post fix incremented

Unlike overloading a prefix operator, overloadingpastfix operation always takes a
single argument so as to distinguish betéween diexpand the postfix operations.

Example:

Fibonacci Fibonacci:: operator++ (int x);
The following operators can be overloaded are given below
Binary Operators

[, () new, delete, *, /, %, +, -, <<, >>, <, <=, >=, == &, " 1=, || &&, ||, =, *=, /=, %=,
+=, -=, <<=, >>= &=, |:’ N=
Unary Operators

->, !, *, &, - ->*, +, ++, - -
Operators common to unary and binary forms

+,-,*% &
Operators can not be overloaded

., WX, ?e, sizeof, #.

POLYMORPHISM

Polymorphism is the process of defining a humbeolgécts of different classes into a
group and call the methods to carry out the opamaif the object using different function calls.
In other words. polymorphism means ‘to carry oufedent processing steps by functions
having same messages. It treats objects of retdésdes in a generic manner. The keyword
virtual is used to perform the polymorphism concdpolymorphism refers to the run time
binding to a Pointer to a method.

EARLY BINDING

Choosing a function in normal way, during compdattime is called as early binding or
static binding or static linkage. During compilatidcime, the compiler determines which
function is used based on the parameters passt tmnction or the function’ s return type.
The complier then substitutes the correct funcfimneach invocation. Such compiler based

146

substitutions are called static linkage. Whatewancfions discussed so far in the earlier
chapters, are based on static binding only.

Function calls are faster in this case becauséhallinformation necessary to call the
function are hardcode.

Program: A program to demonstrate the operation of tagcsbinding.
#include <iostream.h>

class first
{
private:
int X;
public:
void display ();
h
class second : public first
{
private:
inty;
Public:
void display ();
%
void first :: display ()
{
cout<<"First Function”<<endl;
}
void second :: display ()
{
cout<<”Second Function’<<endl;
}
void main ()
{
first f;
second s;
first *ptr;
ptr=&s;
ptr->display ();
s. display ();
}
Output:

First Function
Second Function

The derived class second is inherited from the wasss square through public
derivation. It is known that an object of a derivadss not only inherits characteristics that are
specific to the derived class.

147

POLYMORPHISM WITH POINTERS

Pointers are also central to polymorphism in C+e-.ehable polymorphism, C++ allows
a pointer in a base class to point to either a bkss object or to any derived class object. The
following program segment illustrates how a pointerssigned to point to the object of the
derived class.

General Syntax:

Class base

{

}

Classder. public base

{

/g

void main ()

{
base*ptr; /Ipointer to base
der d;
ptr=&d; /lindirect reference d teethointer

}

The pointer ptr points to an object of the deriekss d.
By contrast, a pointer to a derived class objecy mat point to a base class object
without explicit casting.

Note:
1. A base class pointer can point to the object oftrae class or a derived class.
2. A derived class pointer cannot point to an objéa base class but it can point to the
same class object.

VIRTUAL FUNCTIONS

Virtual functions let derived classes provide diffiet versions of a base class function.
You can declare a virtual function in a base cl#ssn redefine it in any derived class, even if
the number and type of arguments are the samerebadined function overrides the base class
function of the same name. Virtual functions caly @@ member functions.

148

General Syntax:
Class user_ defined_ name

{
Private:
Public:
Virtual return__ type function_ name 1 (arguments);
Virtual return_ type function_ name 1 (arguments);
Virtual return__ type function_ name 1 (arguments);
3

The keyword virtual is used in the methods whilss itleclared in the class definition but
not in the member function definition. The keywaidual should be preceded by a return type
of the function name.

Example:
Class sample
{
Private:
Int x, y;
Public:
Virtual void display ();
Virtual int sum ();
}
Note:

1. The keyword virtual should not be repeated in thénition if the definition occurs
outside the class declaration. The use of a fundjecifier virtual in the function
definition is invalid.

2. A virtual function cannot be a static member beeaasvirtual member is always a
member of a particular object in a class rathen tnanember of the class as a whole.

3. A virtual function cannot have a constructor memhfarction but it can have the
destructor member function.

4. A destructor member function does not take anyraggu and no return type can be
specified for it not even void.

5. An error to redefine a virtual method with a chaogeeturn data type in the derived
class with the same parameter types as thoseidtialvmethod in the base class.

LATE BINDING

Choosing function during execution time is callatel binding or dynamic binding or
dynamic linkage. Late binding reqires some overhéatl provides increased power and

149

flexibility. The late binding is implemented thrdugirtual functions. An object of a class must
be declared either as a pointer to a class oreaemete to a class.

General Syntax:
Classbase
{
virtual void display ();
int sum ();
%
Classder:public base
{
void display ();
int sum ();
%
void main ()
{
base *ptr; /Ipointer to base
der d;
ptr=&d; /lIndirect referencealthe pointer
ptr-> display () /IRun Time binding
ptr->sum (); Compile Time binding
}
Program: A program to demonstrate the ruretiimding of the member functions of a
class.
#include <iostream.h>
class base A
{
public:
virtual void display ()
{
cout<<"Base A “<<endl;
}
3
class der A: public base A
{
public:
virtual void display()
{
cout<<”Derived A” <,end];
}
%

class derB :public der A
150

public:
virtual void display ()
{
cout<,Derived B"<<endl;
}
h
void main ()
{
baseA bA;
derA dA;
derB dB;
baseA *ptr;
ptr=&bA,;
ptr->display();
ptr=&dA,
ptr->display();
ptr=&dB;
ptr->display();
}
Output:
Base A
Derived A
Derived B

Virtual function with inline code substitution

Though virtual functions can be declared as améntiode, being the run time binding of
the compiler, the inline code does not affect ma€thhe programming efficiency. For inline
code substitution, the compiler must get infornmatibout the functions, like from where they
have to be invoked etc. These must be defined gldine compilation time.

General Syntax:
Class base
{
public:
Virtual inline return_ type display ();
Virtual inline return_ type sum ();
3
void main ()
{
base b;
b-> display ();
b-> sum ();
}

151

PURE VIRTUAL FUNCTIONS

A pure virtual function is a type of function whitlas only a function declaration. It does
not have the function definition.

General Syntax:
Classbase
{
Public:
Virtual return_ type function_ name 1 ();
virtual return__ type function_ name 2 ();
3
Program: A program to demonstrate pure virtual funasio
#include <iostream.h>
class baseA
{
Public:
virtual void display()

{
}
3

class derA : public baseA
{
public:
void display ()

{

}
I
void main ()
{
baseA *ptr;
derA dA;
ptr=&dA,
ptr->display ();
}
Output:
Derived A
Note: A pure virtual function can also have the follog format, when a virtual function is
declared within the class declaration itself. Tireual function may be equated to zero if it does
not have a function definition.

cout<<"Derived A “<<endl;

General Syntax:
Class base

152

Public:
virtual return-type function_ name 1() =0;
virtual return__type function_ name 2 () =0;

%
Program: A program to demonstrate pure virtual funciéom equate is to zero
#include<iostream.h>
class baseA
{
public:
virtual void display()

{
}
3
class derA : public baseA

{
public:
void display ()

{

}
h
void main()
{
baseA*ptr;
derA dA;
ptr=&dA,;
ptr->display();
}

Output:

cout<<"Derived A"<<endl;

Derived A

When an object of the derived class tries to acttessigh the pointer of the base class
members, the function invoking message will reagly the derived class members but not to
the base class members as the base class membigorfunay not have a function definition.

ABSTRACT BASE CLASS

A class which consists of pure virtual functionscaled an abstract base class. In the
previous section it has been discussed that aiumatay be defined without any statement or
the function declaration may be equated to zeibdifes not have the function definition part.

General Syntax:
Class base

153

public:
virtual return_ type function_ name 1() =0;
virtual return__ type function_ name 2() =0;

h
class der : public base
{
public:
return_ type function_ namel();
return_ type function_ name2 ();
}

Program: A program to demonstrate Abstract classes
#include<iostream.h>
class student
{
public:
virtual void read()=0;
virtual void display()=0;
/3
class stu_ details : public student
{
Private:
Int rollno;
int mark;
public:
void red();
void display ();
h
void stu__ details :; display()
{
cout<<”Student details ..."<<end];
cout<<”Roll Number. “<<rollno”\Mark’<<mark;

}

void stud_ details ::read()

{
cout<<”Enter the Student details ..."<<end];
cin>>rollno>>mark;

}

void main()

{
student *ptr;
stud__ details st;
ptr=&st;
ptr->read();
ptr->display();

154

Output:
Enter the Student details ...
Student details ...
Roll Number. 10001 Mark 67

CONSRTUCTORSUNDER INHERITANCE

Whenever an object of a class is created, a caretrumember function is invoked
automatically and when an object of the derived<la created, the constructor for that object is
called. This is due to object of the derived chassch contains the members of the base class
also. Since the base class is also part of theetedlass, it is not logical to call the construsto
of the base class.

General Syntax:
Class class1

Public:
Class 1(); //Constructor

3
Class class2 public class1
{
Private:
Public:
Class 2(); //Constructor
2

Program: A program to demonstrate the constructors uimdteritance.
#include<iostream.h>
class base

{
public: base()

{

}
¢
class der: public base

{

cout<<”Base Constructor called \n”;

155

public: der()
{

}
%
void main()

{
}

Output:
Base Constructor called
Derived Constructor called

cout<<”"Derived Constructor called\n”;

der d;

DESTRUCTOR UNDER INHERITANCE

Destructor is a special member function; it is iked automatically to free the memory
space which was allocated by the constructor fanctWhenever an object of the class is
getting destroyed, the destructors are used totlfredeap area so that the free memory space
may be used subsequently. Destructors in an imeet hierarchy fire from derived class to a
base class order.

General Syntax:
Class classl1

{

Private:

Public:
classl (); //Constructor
~classl (); //Destructor

2
Classclass2public classl
{
Private:
Public:
classl (); //Constructor
~class1 (); //Destructor
%

156

Program: A program to demonstrate Destructors

#include<iostream.h>
class base

{
public: base()

{
}

~base ()

{

}
¢
class der: public base

{
public: der()

{

cout<<”Derived Constructor called\n”;

}
~der()

{
}

void main()

{
der d;

}
Output:
Base Constructor called
Derived Constructor called
Derived Destructor called
Base Destructor called

cout<<”Base Constructor called \n”;

cout<<”Base Destructor called\n”;

cout<<”Derived Destructor called\n”;

VIRTUAL DESTRUCTORS

We know that the destructor member function is kato free the memory storage by
the C++ compiler automatically. But the destruateember function of the derived class is not
invoked to free the memory storage which was ategtdy the constructor member function of
the derived class. It is because the destructorbeefinctions are non virtual and the message
will not reach the destructor member functions wundée binding. So it is better to have a
destructor member function as virtual and the wirtestructors are essential in a program to
free the memory space effectively under late biganethod.

157

Example:
#include<iostream.h>

class base
{
public: base() //Constructor cannot have virtual
{
cout<<”Base Constructor called \n”;

}
Virtual ~base ()
{
cout<<”Base Destructor called\n”;
}

|

Class der: public base

{
public: der()
{
cout<<”Derived Constructor called\n”;
}
~der ()
{
cout<<”Derived Destructor called\n”;
}

|

void main()

{

base *b=new der;

/ldelete b;

}

Output:

Base Constructor called
Derived Constructor called

Note the whenever instances are created at run dmehe heap through the new
operator, constructor member function are calletbraatically. When the delete operator is
used, the destructors are automatically calledetease the space occupied by thee instance
itself. As a derived class instance always contaibase class instance, it is necessary to invoke
destructors of both the classes in order to erthatteall the space on the heap is released.

VIRUTAL BASE CLASSES

Multiple inheritances is a process of creating & méass which is derived from more
than one base classes. Multiple in heritance hibir@s can be complied, which may lead to a
situation in which a derived class inherits mu#tiimes from the same indirect base class.

158

ClassclassA

{
Protected:
Int X;
Public:
%
ClassclassB :public classA
{
Public:
2
ClassclassC public classA
{
Public
3
ClassclassD public classBpublic classC
{
Public:
................ /I the data member x comes twice
%

The data member x is inherited twice in the derigisds classD, once through classB
and again through classC. By classB and classCvirigal base classes for classD, a copy of
the data member x is available only once.

A class may be both an ordinary and a virtual liasee same inheritance structure.
Class classA

{
Protected:
Int X;

Public:
h
Class classB: public virtual classA
{

Public:
%

ClassclassC public virtual classA
159

Public
|
ClassclassD :public classB public classC
{
Public
................ /I the data member x comes twice
|

From the above illustration, it can be inferredttha object of derived class classD will
contain tow classA class object, one virtual an€e oon virtual.

TEMPLATESAND EXCEPTION HANDLING
FUCITON TEMPLATE

Template is a method for writing a single function class for a family of similar
functions or classes in a generic manner. Whemglesifunction is written for a family of
similar functions calledunction template. In this function at least one formal argument is
generic.

General syntax:
Template<class T> T function_name(T formal argaise

Return(T);
}
Where the template and class are keywords in Ctlaa function template must start
with template and the T is a parameterized date. typ
Example:
Template<class T>
T swap (T &first, T &second)

{
T temp;
temp=first;
first=second;
second=temp;
return(0);

}

Which supports all the following functions?
Char swap(char *, char *);

Int swap(int, int);

Float swap(float, float);

160

Program: A program to demonstrate function template
#include<iostream.h>
Template<class T> T swap(T &first. T &second)
{

T temp;
temp=first;
first=second;
second=temp;
return(0);

}

Int swap(int &a, int &b);

Void main()

{
Int x= 10, y=20;
Cout<<"Before Swapping’<<endl;
Cout<<"x value"<<x<<endl;
Cout<<"y value<<y<<end|;
Swap(x, y);
Cout<<”After Swapping’<<endl;
Cout<<”x value’<<x<<endl;
Cout<<"y value"<<y<<endl;

}

Output:

Before Swapping

X value 10y value 20

After Swapping

X value 20

Y value 10

CLASSTEMPLATE

In addition to function template, C++ also suppdhs concept of class templates. By
definition, a class template is a class definitibat describes a family of related classes,. C++
offers the user the ability to create a class tuaitains one or more types that are generic or
parameterized. The manner of declaring the claspltde is the same as that of a function
template. The keyword template must be insertealfast word of defining a class template.

General Syntax:
Template <class T>
Classuser_ defined_ name

{

Private:

161

Public:

Once the class template has been defined, it isreztjto instantiate a class object using
a specific primitive or user defined type to replélce parameterized types.

A member function of a class template also contdiaskeyword template whenever it is
declared outside the scope of a class definition.

Program: A program to demonstrate class templates.
#include<iostream.h>
Template<class T>
Class sample
L

Private:
T value, valuel, value?;
Public:
Void getdata();
Void sum();
%
Template <class T>
Void sample<T> :: getdata()
{
Cin>>valuel>>value2;
}
Template<class T>
Void sample <T> :: sum()

{
T value;
Value=value l+value2;
Cout<<”’Summation is “<<value<<endl;

}

Void main()

{
Sample <int> obj1;
Cout<<”Enter the first object data’<<endl;
Obj 1.detdata();
Obj 1.sum();
Sample<float> obj2;
Cout<<”Enter the second object data’<<endl;
Obj2.getdata();
Obj2.sum();

}

Output:

Enter the first object data
162

Summation is 30
Enter the second object data
Summation is 3.3

EXCEPTION HANDLING

An exception is an error or an unexpected everg. &tception handler is a set of codes
that executes when an exception occurs. Excepamlling is one of the most recently added
features and perhaps it may not be supported by madier versions of the C++ compilers.

Exception handling in C++ provides a better methgavhich the caller of a function can
be informed that some error condition has occuridte following keywords are used for
handling error functions in C++.

Try
Catch
Through

Wherever a caller of a function finds an erroisitifficult to check or trace these critical
errors. In C++, these types of error conditionshenedled easily using the above keywords.

Whenever a caller of a function detects an errahauit exception handling, it is very
difficult to handle it in a complex and big softwaiThe program must be developed exception
handling in such way that it determines the poesdirors the program might encounter and
then include codes to hand them.

Exception handling provides another way to transtartrol and information from point
in the execution of a program to an exception hemd\ handler will be invoked only by a
throw expression in a code executed in the hargdtey’ block or the function called from the
handler ‘s try block.

General Syntax:
Try (expression)
Catch(exception detector)

{

}

Throw (expression)

{

//[Error message
}
The try block is a statement. A throw expressioa isary expression of type void.
DATA FILE OPERATION
FILE

163

Fileisa collection of data or a set of characters or mayliext or a program. Basically
there are two types of files available in C++: satjial access files and random access files. The
sequential files are very easy to create than Ramakcess files. In sequential files the data or
text will be stored or read back sequentially. andom access files, data can be accessed and
processed randomly.

OPENING AND CLOSING OF FILES

The heard file, fstream.h supports the highly ssidated input/output stream processing
techniques and to implement input/output for theaamded language features such as classes,
derived classes, function overloading , virtualdiion and multiple inheritance.

Thefollowing methods are used in C++ to read and write files

| fstream to read a stream of object from a deLfile
Ofstream to write a stream of object on a spedifile
Fstream both to read and write a stream o€&otg on a specified file

The heard file fstream.h is a new class which atsf basic file operation routines and
functions. The fstream, Ifstream and Ofstream atled as derived class as these class objects
are already defined in the basic input and outfasiscnamely <iostream.h>

Example: for open a file (Read mode)
#include<fstream.h>
#include<iostream.h>

Void main ()
{ Ifstream infile;
Infile.open(“data_file”); //Open a file
\
Example: for write a set of streams inla {\Write mode)

#include<fstream.h>
#include<iostream.h>

Void main ()
{
Ofstream infile;
Infile.open(“data_file”); //Open a fifer write mode
}
Example: for open a file for Read and Write mode

164

#include<fstream.h>
#include<iostream.h>

Void main ()

{

Fstream infile;
Infile.open(“data_file”, los:: in||ios:: out);

}

When a file is opened for both reading and writthg 1/O streams keep track of two file
pointers —one for input operation and other fopatibperation.

General Syntax:

Void Ifstream:: open(const char* fname, int m=iosg:int port=filebuf::open port);
Void Ifstream:: open (const char* fname, int m=iost, int port=filebuf::open port);
Void Ifstream:: open(const char* fname, int m,potrt=filebut:: open port);

Thelist of member functions used asfile attributes for the various kinds of file opening

2at

operations:

NAME OF THE MEMBER | MEANING

FUNCTION

los:: in Open a file for readir

los:: out Open a file for writing

los:: add Append at the end of file

los:: atc Seek to end of a file upon openi
Instead of beginnir

los:: trunc Delete a file if it exists and rece
it

los:: nocreat Open a file a file does not e

los:: replace Open a file if a file does exist

los binary Open a file for binary mode;
Default is tex

For athird argument in Borland C++, refer the following table

VALUE MEANING

Default

Read only file

Hidden

file

System file

A~ INFL|O

Archieve file

Closing afile

The member function close() is used to close aVilech has been opened for file
processing such as to read, to write and for bmtiead and write. The close() member function

165

is called automatically by the destructor functiodswever, one may call this member function
to close the file explicitly. The close member ftioc will not contain any arguments.

General Syntax:
#include<fstream.h>
#include<iostream.h>
Void main ()

{

Fstream infile;
Infile.open(“data_ file”,ios:: in||ios:: out);

Infile.close (); JICalling to close the file
}
STREAM STATE MEMBER FUNCTIONS

File stream classes inherit a stream state memmber the los class. The stream state
member functions give the information status likel ef file has been reached or file open
failure and so on. The following stream state manifibections are used for checking the open
failure if any, when one attempts to open a fiteirthe diskette.

Eof() stream state member function is used to cldedther a file pointer has reached the
end of a file character or not.

General Syntax:

#include<iostream.h>

#include<fstream.h>

Void main ()

{
Ifstream infile;
Infile.open(“data_file”); //Open def
While(linfile.enof())

Fail() stream state member function is used to chéxitlver a file has been opened for input
Or output successfully, or any invaloperations are attempted or there is an
unrecoverable error. If it fails, it returns a nenz character.

166

General Syntax:
#include<iostream.h>
#include<fstream.h>

Void main ()
{
Ifstream infile;
Infile.open(“data__file”); //Open def
While(linfile.enof())
{
}
}

Bad() The bad() stream state member function is usedheck whether any invalid file
operations has been attempted or there is an weedde error. The bad() member
function returns a nonzero if it is true; otherwis&urn a zero.

General Syntax:
#include<iostream.h>
#include<fstream.h>

Void main ()
{
Ifstream infile;
Infile.open(“data__file”); /IOpen ief
If(!infile.enof())
{

Cout<<"Open failure’<<endl,
Exit(1);

}

Good() is used to check whether the previous file openahas been successful or not. The
good() returns a nonzero if all stream state biszaro.

General Syntax:
#include<iostream.h>
#include<fstream.h>

Void main ()
{
Ifstream infile;
Infile.open (“data__ file”); I/Openfite
While (! infile.enof ())
{

167

}
READING/WRITING A CHARACTER FROM A FILE

The following member functions are used for readamgl writing a character from a
specified file.
Get() member function is used to read an alphanuncbacacter from a specified file.

General Syntax:
#include<iostream.h>
#include<fstream.h>

Void main ()
{
Ifstream infile;
Infile.open(“data__ file”); //Open def
While(linfile.enof())
{
Ch=infile.get()
}
}
Put() member function is used to write a character tepecified file or a specified output
stream.

General Syntax:

#include<iostream.h>
#include<fstream.h>

Void main ()
{
Ofstream infile;
Infile.open(“data__ file™); //Open defin write mode
While('outfile.enof())
{

Ch=outfile.get();
Cout.put(ch); //Digp a character onto a screen.

168

}

Program: A program to write and print a set of charaate file.

#include<fstream.h>

#include<iostream.h>

Void main()

{
//Write some stream in a file
Ofstream oultfile;
Outfile.open(“test”);
Outfile<<”"Directorate of Distance and Continuinguedtion’<<endl;
Outfile<<”Object oriented design’<<endl;
Outfile.close();
/IRead a file
Ifstream infile;
Infile.open(“test”);
Char ch;
While(linfile.enof())
Cout<<(ch=infile.get());

}

Output:
Directorate of Distance and Continuing Education
Object oriented design
Program: A program to copy the contents of a text file intwther.
#include<iostream.h>
#include<fstream.h>
Void main ()
{
Ofstream oultfile;
Ifstream infile;
Char ifile[10],ofile [10];
Cout<<”Enter the input and output filenames”<<endl;
Cin>.ifile>ofile;
Infile.open(ifile);
Outfile.open(ofile);
If(infile.fail())
{
Cout<<”Unable to create a file"<<end];
Return;
}
Char ch;
While (! infile. eof ())

{
Ch= (char) infile. Get ();

169

Outfile.open (ch () ;

Infile. Close ();
Outfile.close ();
Cout<<"File Successfully copied’<<endl;

}

Output:

Test

Testing

File successfully copied

BINARY FILE OPERATIONS

A binary file is a sequential access file in which data are dtaral read back one after
another in the binary format instead of ASCII clesees. A binary file contains integer, floating
point number, array of structures etc. Binary pl®cessing is well suited for the design and
development of a complex database or to read aited avbinary information.

The text file created by C++ can be edited by ahnary editor or by a word processor.
The text file can easily be transferred from onmpoter system to another. On the other hand, a
binary file is more accurate for numbers becaustoites the exact internal representation of a
value. There are no conversions taking place wdideing data to file. The binary format data
file normally takes less space. However, binarynfair data file can not be easily transferred
from one computer system to another due to vanatio the internal representation of the data
from one computer to another.

General Syntax:

Infile (“data”, ios::binary);
Program: A program to open a binary file for storing a sehumbers on a specified file.
#include<fstream.h>
#include<iostream.h>
#include<iomanip.h>
Void main ()
{
Ofstream oultfile;
Char fname [10];
Float x, y, temp;
Outfile.open (“bin”, los :: out||ios:: binary);
For (int i=0; i<=10; i++)
Outfile<<l,
Outfile.close ();
}
The bin file contains
012345678910

170

STRUCTURESAND FILE OPERATIONS

An array of structures can be stored and accessed) dile handling commands.
Sometimes, it may be required to store collectivacture elements and retrieve them in the
similar format.

General Syntax:

Infile<<structure_ var>.data_ member
Program: A program to read a data for the structure elemé&oim the keyboard and to store
them on a specified file and also displayed indbiesole.
#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>
Struct student

{
Int rollno;
Int mark;
|5
Void main ()
{

Struct student st [3];

IntI;

Fstream infile;

Char fname [10];

Cout<<”Enter the file name to store the details"rgle
Cin>>fname;

Infile.open (fname, ios::out);

For (i=0; i<3; i++)

{

Cout<<"Enter the roll no.”<<endl;
Cin>>st[i].rollno;

Cout<<”Enter the mark’<<end!;
Cin>>st[i].mark;

}

For (i=0; i<3; i++)

{

}

Infile.close ();
//IRead the data from the file

Infile<<st[i].rollno<<setw96) <<st[i].mark<<endl;

Infile.open (fname. los:: in);
Cout<<”Reading from the file"<<endl;

171

1=0;

While (! infile. eof ())

{
Infile>>st[i].rollno>>setw (6)>>st[i].mark;
++|:

}

For (intk=0; k<3; k++)

{

}

Cout<<st[k].rolino<<set (6)<<st[k].mark<<endl,

}

Output:

Enter the file name to store the details
Jthasvi

Enter the roll no.
10001

Enter the mark

67

Enter the roll no.
10002

Enter the mark

87

Enter the roll no.
10003

Enter the mark

98

Reading from the file
10001 67

10002 87

10003 98

CLASSAND FILE OPERATIONS

The header file fstream.h must be included for hagdthe file input and output
operations. The mode of file operations such ase#ul, to write and both to read and write
should be defined. The binary file operations regpgito handle the input and output are carried
out using the member functions get () and putr)rfeertion and extraction operators.

The member functions read () and write () are usegad and write a stream of objects
from a specified file respectively.

General Syntax:
Infile. Read ((char*) &obj, sizeof (obj));

172

Example:
Infile.open (“data”, los:: in);
Infile. Read ((char*)&obj, sizeof(obj));

Infile.close ();
General Syntax:
Infile.write((char*)70obj, sizeof(obj));

Example:
Outfile. Open(“data”, los:: out);
Outfile.write((char*)&obj, sizeof{obj));

Outfile.close ();
ARRAY OF CLASS OBJECTSAND FILE PERATIONS

An array is a user defined data type whose elem&m@shomogeneous and stored in
consecutive memory locations. For practical appbeos, an array of class objects are essential
to construct complex data base systems and hemeenganingful to study how array of class
objects are read and written on a file.

General Syntax:

Infile.write((char*) &obij[i],sizeof(obj[i]));

Program: A program to read a data for the array of cldgeats from the keyboard and to store
them on a specified file and also display in thesate.

#include<iostream.h>
#include<fstream.h>

#include<iomanip.h>
Class student

{
Public:
Int rollno;
Int mark;

|3

Void main ()

{

Student st [3];

Intl;

Fstream infile;

Char fname [10];

Cout<<”Enter the file name to store the details"rgle

173

Cin>>fname;

Infile.open (fname, ios::out);
For (i=0; i<3; i++)

{

Cout<<”Enter the roll no."<<endl;
Cin>>st[i].rollno;

Cout<<"Enter the mark’<<end!;
Cin>>st[i].mark;

}

For (i=0; i<3; i++)

{

}

Infile.close ();

//Read the data from the file
Infile.open (fname. los:: in);
Cout<<”Reading from the file"<<endl;
I=0;

While (! infile. eof ()

{

Infile<<st[i].rollno<<setw96) <<st[i].mark<<endl;

Infile>>st[i].rollno>>setw (6)>>st[i].mark;
++[:

}
For (intk=0; k<3; k++)

{
}

Cout<<st[k].rolino<<set (6)<<st[k].mark<<endl;

}

Output:

Enter the file name to store the details
Jthasvi

Enter the roll no.
10001

Enter the mark

67

Enter the roll no.
10002

Enter the mark

87

Enter the roll no.
10003

Enter the mark

98

Reading from the file
10001 67

174

10002 87
10003 98

RANDOM ACCESSFILE PROCESSING

A Sequential access file is very easy to create heandom access file. In the sequential
access file, data are stored and retrieved one aftather. The file pointer always moves from
the starting of the file to the end of the file. @ other hand, a random access file need not
necessarily start from the beginning of the filel anove towards of end of the file. Random
access means moving the file pointer directly tg kEecation in the file instead of moving it
sequentially. The random access approach is ofied with data base files. In order to perform
both reading and modifying an object of a data pasgle should be opened with mode of
access for both to read and to write. The heateekfstream.h> is required to declare a random
access file. As stated in the previous section fdtatam is a class which is based on both the
classes of Ifstream and Ofstream. The fstream itshi®vo file pointers, one for the input buffer
and other for the output buffer for handling a ramdaccess file both for reading and writing.

The random access file must be opened with the following mode of access.

MODE OF ACCESS | MEANING
los:: in In order to read a file
los:: out In order to write a file
los:: ate In order to apper
los :: binary Binary forma

General Syntax:

Fstream file;

File. open (fname, los:: in||ios:;in||ios::out|fiate]||ios::binary);

It is essential to open a random access file wighfbllowing mode of access in order to
perform read, write and append. The file shouldi®ée&ared be declared as a binary status as the
data members of a class is stored in a binary forma

The fstream inherits the following member functions in order to move the file pointer
in and around the data base.

ENUMERATED VALUE |FILEPOSTTION

los:: beg From the beginning of the fi

los:: cur From the current file pointer position
los:: end From the end of the file

Seepage () member function is used to position file operad for random input operations

Example:
Infile. Seekg(40); /gdto byte number 40

175

Infile. Seekg (40,i0s:: beg); //saagethe above

Infile. Seekg (0,ios:: end); /lgdhe end of file
Infile. Seekg(0); gato start of the file
Infile. Seekg (-1,ios:: cur); /I fippinters moved back end by one byte.

Seekp() member function is used to positive file @iems for random output operations.
Tellg() member function is used to check the cumesition of the input stream.
Tellp() member function is used to check the cunpesition of the output stream.

176

